ImageVerifierCode 换一换
格式:PPT , 页数:16 ,大小:172KB ,
资源ID:373405      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-373405.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Threshold Paillier Encryption Web Service.ppt)为本站会员(sumcourage256)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Threshold Paillier Encryption Web Service.ppt

1、10/25/2006,1,Threshold Paillier Encryption Web Service,A Masters Project Proposal by Brett Wilson,2,10/25/2006,Motivation,Secure Electronic Voting Research Interest in improving current voting process is high 2000 Presidential election snafu Improved access/availability (voter turnout) Cryptographic

2、 research has led to new solutions to problems with electronic voting Basic requirements for electronic voting Privacy All votes should be kept secret Completeness All valid votes should be counted correctly Soundness Any invalid vote should not be counted Unreusability No voter can vote twice Eligi

3、bility Only authorized voters can cast a vote Fairness Nothing can affect the voting Extended Requirements for electronic voting Robustness faulty behavior of any reasonably sized coalition of participants can be tolerated Universal Verifiability any party can verify the result of the voting Recipt-

4、freeness Voters are unable to prove the content of his/her vote Incoercibility Voter cannot be coerced into casting a particular vote by a coercer,3,10/25/2006,Motivation,Many of the proposed electronic voting protocols utilize threshold homomorhpic encryption schemes as part of the protocol Protect

5、s voter privacy Individual vote can not be decrypted without cooperation of t of l “authorities” Efficient, universally verifiable vote tallying Only sum of votes is decrypted Individuals can compute encrypted sum, verify proof of correct decryption of sum Implementations of threshold homomorphic en

6、cryption algorithms are not freely available,4,10/25/2006,Threshold Encryption,Public key encryption as usual Distribute secret key “shares” among l participants Decryption can only be accomplished if a threshold number t of the l participants cooperate No information about m can be obtained with le

7、ss than t participants cooperating Proof of valid decryption is provided,5,10/25/2006,Paillier Encryption,Trapdoor Discrete Logarithm Scheme c = gMrn mod n2n is an RSA modulusg is an integer of order n mod n2r is a random number in Zn* M = L(c(n) mod n2)/L(g(n) mod n2) mod n L(u) = (u-1)/n, (n)=lcm(

8、p-1)(q-1) Important Properties HomomorphicE(M1 + M2) = E(M1) x E(M2), E(k x M) = E(M)k Self-blinding Re-encryption with a different r doesnt change M,6,10/25/2006,Threshold Paillier Encryption,Different public key and secret key generation algorithm Distribute key shares using RSA public key encrypt

9、ion Distribute secret key shares using Shamir Secret Sharing scheme Web Service will be an implementation of scheme proposed in “Sharing Decryption in the Context of Voting or Lotteries” Fouque, Poupard, and Stern 2000,7,10/25/2006,Use of Threshold Paillier Encryption in Secure Voting,Ballot format:

10、 pick 1 out of c candidates Let N be number of voters, k such that N2k Vote = 2ck where c is the desired candidate number (0c) All Paillier-encrypted votes could be publicly posted Votes include proof of validity (v lies in a given set of valid votes) At end of election, all invalid votes are remove

11、d, all encrypted votes are then multiplied together to get encrypted sum (publicly verifiable) With cooperation of the required threshold number of “authorities”, the final product could be decrypted to reveal the vote total (sum of individual votes). A threshold number of authorities would not agre

12、e to decrypt a single particular vote, and thus the individual votes would remain private All computations are publicly verifiable given the validity proofs that prove the decryption was done correctly,8,10/25/2006,Web Service Design Goals,Platform Independent Use of web service XML input/output Ext

13、ensible Additional encryption algorithms could be added Additional services could be offered Threshold signatures Verifiable Mix Net,9,10/25/2006,Implementation Tools,Visual Studio 2005 VB.NET Gnu Multiprecision Library (Gmp) Open source arbitrary precision numeric library Compiled under Visual Stud

14、io 2005 NGmp Open source VB.NET binding of gmp.dll Enables calling of gmp library functions through VB.NET Compiled under Visual Studio 2005,10,10/25/2006,Threshold Paillier Encryption Web Service,Key generation algorithm Inputk size of keyl number of shares to generate One RSA public key (of the de

15、signated participant) for each sharet threshold parameter OutputPublic Key PKList SK1, , SKl of private key shares Encrypted with supplied RSA keys so only designated participant can recover the key shareList of Verifier Keys VK, VK1, ,VKl Used for proving validity of decryption,11,10/25/2006,Thresh

16、old Paillier Encryption Web Service,Encryption Algorithm InputPublic Key PKRandom string rCleartext M OutputCiphertext c,12,10/25/2006,Share Decryption Algorithm InputCiphertext cPrivate Key Share Ski Encrypted with public key of webservice OutputDecryption share ciValidity proof pi,Threshold Pailli

17、er Encryption Web Service,13,10/25/2006,Threshold Paillier Encryption Web Service,Combining Algorithm InputCiphertext cList of decryption shares c1,clList of verification keys VK, VK1VKlList of validity proofs P1,Pl OutputM,14,10/25/2006,Project Deliverables,A working prototype of Paillier Threshold

18、 Encryption Web Service (PTEWS) A simple demo of applying PTEWS in online voting A master project report documenting the research findings and lessons learned,15,10/25/2006,Tasks and Milestones,Week 1: Proposal Briefing/Approval Week 2: WebService “skeleton” complete WebMethod stubs created, classes

19、 for passing parameters and return results complete Week 3: Encryption algorithms implemented WebMethod stubs completely implemented with encryption and utility algorithms Week 4: Testing Interface complete Windows application for testing of Web Service Simple test of voting application Week 5: Fina

20、l Report complete Week 1 ends Oct 30, Week 5 ends Nov 27,16,10/25/2006,References,“Sharing Decryption in the Context of Voting or Lotteries” P. Fouque, G. Poupard, and J. Stern, 2000 “Public Key Cryptosystems Based on Composite Degree Residuosity Classes” P. Paillier, 1999 “How to Share a Secret” A.

21、 Shamir, 1979 Big Number Libraries Gnu Multiprecision Library Opensource C language library http:/ J# BigInteger J# library available from Microsoft http:/ C# BigInteger Opensource implementation of Java BigInteger http:/ NGmp .NET Mono Multiprecision Library (gmp binding to .NET) http:/ Building Gmp with Visual Studio 2005 http:/

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1