1、第 6章 IIR数字滤波器的设计 全通系统 最小相位系统 模拟低通滤波器设计 脉冲响应不变法 双线性变换法 模拟域频率变换定义:如果用 Am(z)表示 m 阶实系数全通滤波器的系统函数,则全通滤波器的定义a)一阶全通滤波器的极点和零点极点为:零点为:一阶复系数全通滤波器b)一阶全通滤波器的频率响应故一阶全通滤波器的相位响应是单调递减的。a)m阶全通滤波器的极点和零点如 zk为一个极点,则 zk* 也是 一个极点 ,1/zk和 1/zk*必为系统零点。b)m阶全通滤波器的频率响应m阶实系数全通系统m阶实系数全通系统可分解为 m个一阶全通系统的积,由于一阶全通系统相位是递减的m阶实系数全通系统的相
2、位非正递减的 。2阶实系数全通滤波器的相位响应(a)相位响应的主值 (b)解卷绕后的相位响应定义:零极点都在单位圆内的因果系统称为最小相位系统。记为 Hmin(z)。任一实系数因果稳定系统的 H(z)都可表示为设系统 H(z)只有一个零点在 z = 1/a*在单位圆外, |a|1,那么 H(z)就能表示成H(z)=H1(z)(z-1 - a*) 按定义 H1(z)是一个最小相位系统。 H(z)也可等效的表示为故 H(z) =Hmin(z) A1(z)最小相位系统例 一实系数因果稳定系统的系统函数 H(z)为由于系统的零点为 z = -1/b, 故这不是一最小相位系统。和 H(z)具有相同幅度响
3、应的最小相位系统为a=0.9, b=0.4时 H(z)和 Hmin(z)的相位响应最大相位系统 (maximum-phase system):一个稳定的的因果系统,零点全在单位圆外有理系统函数的稳定性设有理系统函数 H(z)的分母多项式为构造全通滤波器 Am(z)由 H(z)稳定的充要条件例 已知 2阶 IIR系统的分母多项式为试确定系统稳定的条件。解:由定义知 k2=d2所以系统稳定的条件为IIR滤波器设计的基本思想 将数字滤波器的设计为模拟滤波器的设计。 设计满足技术指标的模拟滤波器。 将模拟滤波器转换为数字滤波器。模拟滤波器的技术要求Butterworth模拟低通滤波器切比雪夫 II型模
4、拟低通滤波器切比雪夫 II型模拟低通滤波器椭圆低通滤波器模拟低通滤波器的设计模拟滤波器的技术要求pw : 通带截止频率ws: 阻带截止频率d p: 通带波动d s: 阻带波动通带衰减 (db)(passband Attenuation)阻带衰减 (db )(stopband Attenuation)|H( jw)|10通带过渡带阻带pw swsdpd-1wG(w)=20log10|H(jw)| dB 滤波器的 Gain函数wc10N=1N=3N=50.707巴特沃斯低通滤波器N: 滤波器阶数性质:2)幅度响应单调下降 (monotonically decreasing)1)|H( j 0)|=
5、1, |H(j)|=0, -20log10|H( jwc)|3dbwc: 3db 截频 , 当 wc =1时,称其为 归一化的 BWF在 w=0点做 Taylor series展开归一化的 Butterworth滤波器 (BWF)任意的 BWF 和归一化 BWF 的关系3) |H(jw)|2在 w=0点 1到 2N-1阶导数零。称为最大平坦性。(maximally flat magnitude filter)归一化 Butterworth滤波器的极点条件: h(t)是实的 H( jw ) =H*(- jw )极点:共有 2N个极点,为了保证系统的稳定,选左半平面的 N个极点。为左半平面的 N个
6、极点当 N为偶数时例: N=2, =p/4 ; k=1例: N=4, =p / 8, 3 p / 8; k=1 ,2当 N为奇数时例: N=1N=3例:设计一个满足下列指标 BW型模拟滤波器p1.0=w p , p4.0=w s , dBAp 1= , dBAs 10=取 N=2,将 N=2带入通带满足的方程通带满足指标,阻带超过指标验证: Ap=0.9999db ; As= 18.2795 db模拟 Butterworth低通滤波器设计步骤 :(1)由滤波器的设计指标 wp、 ws、 Ap、 As和式确定滤波器的阶数 N(2) 确定 wc(3)确定滤波器的系统函数 H(s)Type I Ch
7、ebyshev Lowpass filter(CB I 型 )w)( wjH1cwN=2N=3N=7e : 通带波纹 cw :通带截频 N:阶数 (由阻带指标确定 )CB I 型 filter的 性质1)在 cww 0 时, 2)( wjH 在 1 和 21 1e+ 间振荡 (equiripple filter)2) cww 时, 2)( wjH 单调下降 ( N 增大,下降加速)3) 22 1 1)( ew +=cjH e 控制了通带衰减N 为奇时 1)0( 2 =jH N 为偶时 22 1 1)0( e+=jHw)( wjH1cwN=2N=3N=7CB I 型 AF 设计步骤1)通带截频确
8、定 pc ww =2)通带指标确定 e3)阻带指标确定 N切比雪夫 II型模拟低通滤波器椭圆低通滤波器MATLAB设计椭圆滤波器函:N,Wc=ellipord(Wp,Ws,Ap,As,s)确定椭圆滤波器的阶数 N。 Wc=Wp。num,den=ellip(N,Ap,As,Wc,s)确定阶数为 N, 通带参衰减为 Ap dB, 阻带衰减为 As dB的椭圆滤波器的分子和分母多项式。 Wc是椭圆滤波器的通带截频。基本原理脉冲响应不变法设计 DF的 步骤H(z)的确定脉冲响应不变法 (Impulse Invariance)H(ejW)和 H(jw)的关系:无混叠时:数字滤波器在 W点的频响特性和模拟滤波器 w = W/ T频响特性只差一个常数因子基本原理
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1