ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:1.71MB ,
资源ID:374475      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-374475.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Epipolar Geometryclass 11.ppt)为本站会员(fatcommittee260)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Epipolar Geometryclass 11.ppt

1、Epipolar Geometry class 11,Multiple View Geometry Comp 290-089 Marc Pollefeys,Content,Background: Projective geometry (2D, 3D), Parameter estimation, Algorithm evaluation. Single View: Camera model, Calibration, Single View Geometry. Two Views: Epipolar Geometry, 3D reconstruction, Computing F, Comp

2、uting structure, Plane and homographies. Three Views: Trifocal Tensor, Computing T. More Views: N-Linearities, Multiple view reconstruction, Bundle adjustment, auto-calibration, Dynamic SfM, Cheirality, Duality,Multiple View Geometry course schedule (subject to change),More Single-View Geometry,Proj

3、ective cameras and planes, lines, conics and quadrics.Camera calibration and vanishing points, calibrating conic and the IAC,Two-view geometry,Epipolar geometry3D reconstructionF-matrix comp.Structure comp.,Correspondence geometry: Given an image point x in the first view, how does this constrain th

4、e position of the corresponding point x in the second image?,(ii) Camera geometry (motion): Given a set of corresponding image points xi xi, i=1,n, what are the cameras P and P for the two views?,(iii) Scene geometry (structure): Given corresponding image points xi xi and cameras P, P, what is the p

5、osition of (their pre-image) X in space?,Three questions:,The epipolar geometry,C,C,x,x and X are coplanar,The epipolar geometry,What if only C,C,x are known?,The epipolar geometry,All points on p project on l and l,The epipolar geometry,Family of planes p and lines l and l Intersection in e and e,T

6、he epipolar geometry,epipoles e,e = intersection of baseline with image plane = projection of projection center in other image = vanishing point of camera motion direction,an epipolar plane = plane containing baseline (1-D family),an epipolar line = intersection of epipolar plane with image(always c

7、ome in corresponding pairs),Example: converging cameras,Example: motion parallel with image plane,Example: forward motion,e,e,The fundamental matrix F,algebraic representation of epipolar geometry,we will see that mapping is (singular) correlation (i.e. projective mapping from points to lines) repre

8、sented by the fundamental matrix F,The fundamental matrix F,geometric derivation,mapping from 2-D to 1-D family (rank 2),The fundamental matrix F,algebraic derivation,(note: doesnt work for C=C F=0),The fundamental matrix F,correspondence condition,The fundamental matrix satisfies the condition that

9、 for any pair of corresponding points xx in the two images,The fundamental matrix F,F is the unique 3x3 rank 2 matrix that satisfies xTFx=0 for all xx,Transpose: if F is fundamental matrix for (P,P), then FT is fundamental matrix for (P,P) Epipolar lines: l=Fx & l=FTx Epipoles: on all epipolar lines

10、, thus eTFx=0, x eTF=0, similarly Fe=0 F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2) F is a correlation, projective mapping from a point x to a line l=Fx (not a proper correlation, i.e. not invertible),The epipolar line geometry,l,l epipolar lines, k line not through e l=Fkxl and symmetrically l

11、=FTkxl,(pick k=e, since eTe0),Fundamental matrix for pure translation,Fundamental matrix for pure translation,Fundamental matrix for pure translation,example:,motion starts at x and moves towards e, faster depending on Z,pure translation: F only 2 d.o.f., xTexx=0 auto-epipolar,General motion,Geometr

12、ic representation of F,Fs: Steiner conic, 5 d.o.f. Fa=xax: pole of line ee w.r.t. Fs, 2 d.o.f.,Geometric representation of F,Pure planar motion,Steiner conic Fs is degenerate (two lines),Projective transformation and invariance,Derivation based purely on projective concepts,F invariant to transforma

13、tions of projective 3-space,unique,not unique,canonical form,Projective ambiguity of cameras given F,previous slide: at least projective ambiguity this slide: not more!,lemma:,(22-15=7, ok),Canonical cameras given F,F matrix corresponds to P,P iff PTFP is skew-symmetric,Possible choice:,Canonical re

14、presentation:,The essential matrix,fundamental matrix for calibrated cameras (remove K),5 d.o.f. (3 for R; 2 for t up to scale),E is essential matrix if and only if two singularvalues are equal (and third=0),Four possible reconstructions from E,(only one solution where points is in front of both cameras),Next class: 3D reconstruction,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1