ImageVerifierCode 换一换
格式:PPT , 页数:20 ,大小:1.47MB ,
资源ID:376409      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-376409.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(How Thick is Europa's Ice Shell Crust-.ppt)为本站会员(赵齐羽)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

How Thick is Europa's Ice Shell Crust-.ppt

1、How Thick is Europas Ice Shell Crust?,David Galvan ESS 298 The Outer Solar System,Outline,Our interest in Europas ice shell crust Evidence for Ice/Water crust Methods of estimating thickness Gravity measurements Induced magnetization Impact Craters Surface Topography and Flexure model Convective Tid

2、al Dissipation Summary of Estimates,Europa,Second major satellite from Jupiter. Smallest of the Galileans. (R=1560 km, a little smaller than Earths Moon) Spectroscopic studies indicate primarily H20 crust. (Malin and Pieri, 1986) Elliptical orbit yields tidal heating (e=0.01) Surface is 30 My old (b

3、ased on cratering record) Cassen & Reynolds (1979) first suggested liquid water ocean could be sustained by tidal heating Kivelson et al (2000) showed that Europa has an induced magnetic field consistent with Jupiters field inducing a current in a conductive salty ocean within 100 km of the surface.

4、,Astrobiological Potential,Life requires: Energy source (tidal and radiogenic heating could fuel volcanism at base of H20 layer.) Liquid water (very likely) Organic chemistry (a strong possibility, due to observation of deposited salts on surface, organic compounds delivered by Jupiter-family comets

5、, and possible convective action allowing transport of compounds/nutrients from surface to sub-surface.Based on reccomendation of NRC in 2000, which cited U.N. Document No. 6347 January 1967: Galileo Spacecraft was intentionally crashed into Jupiter for the expressed purpose of eliminating the possi

6、bility of a future collision with and forward contamination of Europa.,Ideas for a Biosphere,Image from Greenberg, American Scientist, Vol 90, No. 1, Pg. 48,Gravity Measurements,Anderson et al (1997, 1998) used Doppler Shift of Galileos radio communication carrier to measure coefficients for a spher

7、ical harmonic representation of Europas gravitational potential to second order.Obtained an axial moment of inertia measurement of (C/MR2) = 0.346. (Compare with 0.4 for uniform sphere, 0.378 for Io)Suggests a dense core and much less dense surface.Cant distinguish between solid and liquid H20For a

8、2-layer model: (unlikely)A rock-metal (Fe-enriched) core and about 0.85 Re and an ice/water crust of 150 - 250km in thickness. Considered unlikely for such a small body, since radiogenic heating in the silicate core would lead to differentiation, and formation of metal core.For a 3-layer model: (mos

9、t likely)A Fe or Fe-S metal core of 0.4 Re, a silicate mantle, and an ice/water crust of 80 170 km in thickness,Where = longitude from Jupiter-Europa line, and =latitude.,Induced Magnetization,Based only on observations of surface properties and gravity potential, there is no obvious way to tell if

10、liquid water exists today, or if it froze thousands of years ago. Kivelson et al (2000) discovered an induced magnetic field at Europa, generated by the changing direction of Jupiters B-field at Europa as the satellite orbits the planet.,Magnetometer measurements show that Europas dipole moment chan

11、ged due to a change in the relative orientation of Jupiters magnetic field, as Europa was in a different location in its orbit.,One model that explains this is a conducting spherical shell (probably liquid salt water) at a depth of at least 8 km below the ice crust.,Induced Magnetization (contd.),Zi

12、mmer et al (2000) further constrained the spherical conducting shell model through in-depth analysis of the induced magnetic field, and variation of conductivity and depth.Assumes ocean thickness between 100 km and 200 km (from Anderson)Showed that the magnetic signature required an ocean within 175

13、 km of the surface of Europa, with a minimum required conductivity of 72 mS/m and magnetic amplitude 0.7.,Craters 1,Central peaks in craters consist of deeply buried material uplifted immediately after impact. This means that the central peak craters on Europa should provide a lower limit of ice she

14、ll thickness, since if the impactor penetrates through the ice layer, a central peak will not form. Turtle & Pierazzo (2001) conducted numerical simulations of vapor and melt production during crater formation in layers of ice overlying liquid water and warm, convecting ice. Used “small” and “large”

15、 (12 & 21km transient crater) objects, meant to represent Jupiter-family comet objects with 26.5 km/s vertical velocities. Also used a conducting ice layer with Tsurf = 110 K and Tbase= 270 K,Solid=no central peak Open with solid center = central peak Nested ring = multiring basins,Craters 1, (contd

16、.),Found that: At 9km thickness neither impactor vaporizes/melts through the ice crust. So 9km is not a lower bound.At 5 km thickness, large impactor melts through the crust, but small impactor does not. So 5 km not a lower bound.At 3 km thickness, large and small impactors mellt through ice crust t

17、o warm ice. Under a central peak 5km across and 500 m high, like at Pwyll Crater, viscosity of ice would be 1013 Pa s, yielding relaxation time of 1yr. But, since Pwyll crater does exist, it must not have relaxed away, and hence the impactor that created Pwyll did not breach the ice crust.They claim

18、 that for 3km of ice over a liquid water layer, both large and small impactors would melt through the crust, precluding central peak formation as well.,3km ice over warm ice,5 km ice over liquid water,9 km ice over liquid water,Large (21km) Transient crater,Similar (21km) Transient crater,Hence, ice

19、 crust must be 3 km!,Craters, 2,Morphology of impact craters depends on surface gravity and lithospheric properties.Since the Galileans and the Moon have fairly similar values of g, any differences in crater morphology between the satellites must be due to lithospheric rheology or composition differ

20、ences.Schenk (2002) notices systematic differences between Europa craters and craters on Ganymede and Callisto.Depth as a function of Diameter (d/D) undergoes two breaks in trend, called transitions. 2 transitions occur at different diameters for Europa than for Ganymede and Callisto.,Europa,Ganymed

21、e/ Callisto,Central Peak (8 km),Central Peak (18 km),Central Pit (14 km),Central Pit (30 km),Central Dome (121 km),Anomalous Dome (138 km),Anomalous Central Peak (27 km),Multiring Basins (41 km),Scalebars are 30 km for G/C and 10 km for Europa,Transition 1: From simple bowl to complex (central struc

22、ture) craters. Similar on all 3 satellites.,C,G,E,This constrains the ice shell to be at least 19 - 25 km thick.,Transition 2: Anomalous changes in complex crater dimensions. Due to temperature dependent rheologic change with depth. Europa structures dont support as much topography, presumably due t

23、o weaker ice at a shallower depth than Ganymede or Callisto.,Transition 3: Sharp reduction in crater depths and development of multiring basins. Consistent with impact into brittle crust resting on a fluid layer. Occurs for Europa at D = 30 km, which implies a crust of 19 25 km. (according to labora

24、tory transient crater studies),Tidal Dissipation / Heat Flow,Hussmann & Spohn (2001) used a steady state model of tidal dissipation. Used viscoelastic rheology for Europas ice, and current values for orbital elements. Used the three-layer model proposed by Anderson et al (1998). With total water lay

25、er of 145 km.Model has tidal dissipation as a heat source in the viscoelastic ice, and radiogenic heat source in the silicate mantle. In the stagnant lid of ice crust, conduction allows surface heat flux.They vary the melting-point viscosity of ice while calculating heat production and heat flow thr

26、ough the ice crust as a function of thickness.,Thicknesses not to scale,Tidal Dissipation / Heat Flow,They attempt to balance the heat budget of Europas H20 layer by plotting tidal dissipation (heat production rate) and heat flux through the ice layer (convecting and conducting cases) for different

27、melting-point viscosities as a function of ice thickness.,Ice Crust thickness range: 30 km, and surface heat flow = 20mW/m2,Elastically Supported Topography,Nimmo et al (2003) used the wavelength of topography near Cilix crater to estimate elastic thickness Te. Then used a relation to infer actual c

28、rustal thickness Tc, based on temperature of surface Ts and base of crust Tb, and temperature of the base of the elastic layer Tr.,Cilix crater with topographic profiles.Derived from Galileo stereographic images,Elastically Supported Topography,Leads to crust thickness of 15 - 35 km!,Combined topogr

29、aphic profile for ice crust with rigidity D loaded against by a trapesoidal mass, with a best fit model of Te = 6 km,Lowest value of the combined root mean square “misfit” again shows best fit at Te = 6 km,Conductive ice crust: Tb = melting temp, tc is crust thickness. Convective ice crust: Tb = tem

30、p of convecting ice, tc is conducting lid thickness.,Summary of Estimates,Gravity constraint: total ice/liquid layer 80 - 170 km Magnetometer constraint: Electrically conducting liquid water ocean must exist at a depth of within 200 km, otherwise poorly constrained. Craters Minimum ice shell thickne

31、ss of 19-25 km Tidal Dissipation Heat conducting ice crust of 30 km Topography / Elastic Thickness Crustal thickness of 15 - 35 km.TOTAL: Probably 25 km of ice crust, followed by liquid water ocean down to a depth of 150 km Get your swim trunks!,Further constraints,Could be brought by: Another missi

32、on with: Ground (Ice) Penetrating radar A Europa orbiter for more precise radio science and gravity measurements Seismometers?,JIMO: would launch no earlier than 2015,References,Anderson, J. D., E. L. Lau, W. L. Sjogren, G. Schubert, and W. B. Moore. Europas differentiated internal structure: Infere

33、nces from two Galileo encounters. Science 276, 12361239. (1997)Anderson, J. D., E. L. Lau, W. L. Sjogren, G. Schubert, and W. B. Moore. Europas differentiated internal structure: Inferences from four Galileo encounters. Science 281, 20192022. (1998)Zimmer, C., K. Khurana, M. G. Kivelson. Subsurface

34、Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations. Icarus 147, 329-347. (2000)Nimmo, F., B. Giese, and R. T. Pappalardo, Estimates of Europas ice shell thickness from elastically-supported topography, Geophys. Res. Lett., 30(5),1233 (2003)Schenk, P. M., Thickness cons

35、traints on the icy shells of the Galilean satellites from a comparison of crater shapes, Nature, 417, 41421 (2002).Greenberg, R. Tides and the biosphere of Europa. Am. Sci. 90, 4855 (2002).Hussmann, H., T. Spohn, and K. Wieczerkowski, Thermal equilibrium states of Europas ice shell: Implications for

36、 internal ocean thickness and surface heat flow, Icarus, 156, 143151 (2002)Hoppa, G. V., B. R. Tufts, R. Greenberg, and P. E. Geissler, Formation of cycloidal features on Europa, Science, 285, 18991902 (1999a)Pappalardo, R. T., et al., Geological evidence for solid-state convection in Europas ice sh

37、ell, Nature, 391, 365368 (1998)Turtle, E. P., and E. Pierazzo, Thickness of a Europan ice shell from impact crater simulations, Science, 294, 1326 1328 (2001),Other Estimates,Pappalardo et al (1998) interpret surface features as diapirs (warm, buoyant ice masses) yielding crust thickness of 3-10 km,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1