ImageVerifierCode 换一换
格式:PPT , 页数:21 ,大小:64.50KB ,
资源ID:376412      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-376412.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(How to Build a Stream Database.ppt)为本站会员(赵齐羽)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

How to Build a Stream Database.ppt

1、How to Build a Stream Database,Theodore Johnson AT&T Labs - Research,What is a stream database?,Query data from a stream A data feed with a schema You can also query conventional relations Examples Sensor data Stock market quotes Network monitoring data Querying a stream forces some changes to the D

2、BMS: Must use push-based rather than pull-based operators Must be able to provide partial answers E.g., you never finish the query One-pass E.g., you cannot (in general) rewind the stream.,Stream Databases for Network Measurements,Continuing need to measure and monitor networks Router configuration,

3、 debugging, detect network attacks, verify service agreements, . Very large amounts of data In principle, wed like to query every packet flowing in the network And in real time Data arrives in streams IP streams, NetFlow streams, SNMP streams, Special queries : grouping by subsequences IP packets fo

4、rming a flow, forming a TCP/IP session, forming a users interactions, ,Query Language,Typical queries: For each source IP address and each 5 minute interval, count the number of bytes and number of packets related to HTTP transfers Find the TCP/IP SYN packets with and without matching FIN packets Co

5、mpute the NetFlows in the packet stream, using a 30-second timeout between packets Pervasive use of time and sequence. We would like to express these queries using a minimal change to SQL. We will rely on the query optimizer making use of ordering properties of the data streams.,Basics,Selection, pr

6、ojection, join, group-by, aggregation, etc. Mix stream with tables Some restrictions to ensure that we can answer the query in limited space Join : When joining streams, the join predicate must define a window in which the join must occur E.g. match SYN packets on an inbound link with SYNACK on an o

7、utbound link. Group-by and Aggregation : We must be able to determine when all tuples for a group have been processed E.g., number of packets during each 30 second interval More on this later.,Complex Aggregation,Grouping Variables Analogous to table variables Represents the value of a correlated su

8、bquery Only aggregate values can be referenced Example:,Select SourceIP, tb, (count(*)+count(X)/2+count(Y)/4)/1.75 From Packets Group By SourceIP, ts/60, ts/60+1,ts/60+2 as tb, X, Y Such thatX.SourceIP=SourceIP and X.ts/60+1=tbY.SourceIP=SourceIP and Y.ts/60+2=tb,X represents the querySelect * from

9、Packetswhere SourceIP=$SourceIP and ts/60+1 = $tb,Defining Sequences,Count the packets in connection K between the SYN packet and the FIN packet,Select K, ts, count(Y) from TCPIP Where SYN=1 Group by K, ts : X, Y Such ThatX.K = K and X.ts ts and X.FIN = 1Y.K = K and Y.ts = ts and Y.ts = MIN(X.ts),Or

10、dering Properties,The query language lets us express queries that seem to require self-joins, etc. But the queries frequently have a temporal component: timestamps as group-by variables, timestamps in the join predicates, etc. If we can reason about timestamps, we can find a stream evaluation plan f

11、or these queries But not all We want to avoid cumbersome model restrictions, e.g. sequence databases We want precise semantics, e.g. avoid “continuous query” models.,Temporal Properties,Define ordering properties on attributes of a stream. Allow for multiple ordering properties, e.g. multiple timest

12、amps, start time vs. end time, timestamp vs. sequence number, etc. Many types of ordering properties Increasing, nondecreasing, Increasing within delta, banded-increasing(epsilon) Increasing in group G Ordering properties are part of the data type.,Stream TCPIPUllong timestamp increasing;Uint Source

13、IP;Uint SequenceNbr increasing_in_group(SourceIP, ) ; ,Stream Operators,Power of relational algebra : closed algebra. Enable the composition of complex queries E.g., COUNT DISTINCT is a COUNT(*) over a GROUP BY Need stream operators which produce streams That is, we can deduce ordering properties of

14、 the output We have defined ordering properties to capture semantics of the output of operators Increasing in group G : group-by and aggregation Banded-increasing : window join. Implementation detail : special operators Emulate complex network protocols, e.g. IP defragmentation,Basic Operators,Selec

15、tion, projection, non-stream join, etc. Scalar expressions : perform type imputation on temporal properties, e.g. timestamp/5000 is non-decreasing Join between two streams: The join predicate must define a window between ordered attributes E.g. R.ts BETWEEN(S.ts, S.ts+epsilon) Join algorithm can tra

16、de off buffer space for improved ordering properties. R.ts and S.ts banded-increasing, vs. R.ts (S.ts) increasing and S.ts (R.ts) banded-increasing.,Additional Operators,Stream Union : Merge two streams Preserve an ordering property Stream sort Improve an ordering property User-defined operators,Gro

17、up-by and Aggregation,We need to determine when to open and when to flush groups based on the tuple stream GOPEN(t,G) : set of groups to create when tuple t arrives, and the set of groups is G. GCLOSE(t,g): returns TRUE when if group g will not receive any further tuples, based on attributes of t. C

18、omplex aggregation : Each aggregate has an associated predicate. A tuple contributes to the aggregate only if it satisfies the predicate. Note: In this general this predicate defines a join condition between G and the tuple stream. Correlated aggregates : In some cases (especially when defining sequ

19、ences) we can even compute correlated aggregates. Recall the example on slide 7.,Optimization,Conventional optimization Push selection, projection as low as possible Join order optimization Operator-specific optimization Better implementations Search for predicates which allow operator-specific opti

20、mizations Temporal property optimization Ordering properties of input vs. operator speed vs. ordering properties of the output.,Gigascope,Fast and flexible network monitor Submit SQL-like queries to obtain a monitoring stream Monitor Gigabit Ethernet (1Gbps X 2 directions) Aggressive optimizations E

21、xecute some or all of the queries in the Network Interface Card (NIC) Goals Execute queries over every byte of every packet in the link. Layer-7 queries Reconstruct TCP sessions, interpret streaming media control traffic,. Etc. Gigascope is the motivation for the stream database research. Demo in SI

22、GMOD 2002,Gigascope Architecture,Stream database Registry : record semantics of the executing query nodes. Stream manager : route tuples between query nodes, application Two layer architecture Low-level queries : input is a sniffed packet stream. High-level queries : input is a tuple stream.,Stream

23、Manager,NIC1,lq1,lqn,lq1,lqn,Registry,HQn,Appm,NIC2,Query Processing Architecture,Query nodes represent a single-block query, and are generated code. All query nodes live in a run-time system, and follow an API Callbacks : initialize, accept_tuple, accept_command, free Functions : post_tuple, standa

24、rd and user-defined functions Low-level queries Limited set of query nodes (selection/projection, aggregation) Tight constraints on resource usage High-level queries Much wider variety of operators Use operator templates, specialize with generated functors. Accept_tuple callback routes tuples throug

25、h operators in the query node.,Splitting a query,Network packets are presented only to low-level queries The NIC has two 88Mhz processors, but only 1Mbyte of memory. Limited set of operators, available functions, etc. If a query cannot be executed entirely in the NIC, it is split into low-level quer

26、ies and high-level queries That is, perform as much selection as possible in the NIC Also perform partial aggregation. Complete the aggregation in a high-level query.,Generating Code,Parse the query Flex, Bison. Build the parse tree. Analyze the parse tree Build symbol tables Table references, colum

27、n references, group-by variables, aggregate references, etc. Determine type of query Selection, join, aggregation, etc. Analyze the predicates Convert to CNF Build query nodes (and query plan) Fill in placeholders (the selection predicate, etc.) Split the query Result is one or more queries Optimize

28、 the query plan Perform further code-generation time analysis Generate the code,Other nice features,Every query can accept parameters Necessary flexibility, because changing low-level queries requires rebuilding the RTS. More generally, each query accepts commands Load new parameters, report statist

29、ics (and errors), etc. High-level queries relay the command to the low-level queries. Stream-based architecture Easy to add nested queries on-the-fly Easy extension to distributed queries (we think) Executables are self-documenting The source code contains the schema and the query Library for parsing and interpreting the query.,Any Questions?,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1