ImageVerifierCode 换一换
格式:PPT , 页数:38 ,大小:1.61MB ,
资源ID:376493      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-376493.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Interactively Optimizing Information Retrieval Systems as a .ppt)为本站会员(appealoxygen216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Interactively Optimizing Information Retrieval Systems as a .ppt

1、Interactively Optimizing Information Retrieval Systems as a Dueling Bandits Problem,ICML 2009Yisong Yue Thorsten Joachims Cornell University,Learning To Rank,Supervised Learning Problem Extension of classification/regression Relatively well understood High applicability in Information RetrievalRequi

2、res explicitly labeled data Expensive to obtain Expert judged labels = search user utility? Doesnt generalize to other search domains.,Our Contribution,Learn from implicit feedback (users clicks) Reduce labeling cost More representative of end user information needsLearn using pairwise comparisons H

3、umans are more adept at making pairwise judgments Via Interleaving Radlinski et al., 2008On-line framework (Dueling Bandits Problem) We leverage users when exploring new retrieval functions Exploration vs exploitation tradeoff (regret),Team-Game Interleaving,1. Kernel Machines http:/svm.first.gmd.de

4、/ 2. Support Vector Machine http:/ 3. An Introduction to Support Vector Machines http:/www.support- 4. Archives of SUPPORT-VECTOR-MACHINES . http:/www.jiscmail.ac.uk/lists/SUPPORT. 5. SVM-Light Support Vector Machine http:/ais.gmd.de/thorsten/svm light/,1. Kernel Machines http:/svm.first.gmd.de/ 2.

5、SVM-Light Support Vector Machine http:/ais.gmd.de/thorsten/svm light/ 3. Support Vector Machine and Kernel . References http:/svm.research.bell- 4. Lucent Technologies: SVM demo applet http:/svm.research.bell- 5. Royal Holloway Support Vector Machine http:/svm.dcs.rhbnc.ac.uk,1. Kernel Machines T2 h

6、ttp:/svm.first.gmd.de/ 2. Support Vector Machine T1 http:/ 3. SVM-Light Support Vector Machine T2 http:/ais.gmd.de/thorsten/svm light/ 4. An Introduction to Support Vector Machines T1 http:/www.support- 5. Support Vector Machine and Kernel . References T2 http:/svm.research.bell- 6. Archives of SUPP

7、ORT-VECTOR-MACHINES . T1 http:/www.jiscmail.ac.uk/lists/SUPPORT. 7. Lucent Technologies: SVM demo applet T2 http:/svm.research.bell- r1,f2(u,q) r2,Interleaving(r1,r2),(u=thorsten, q=“svm”),Interpretation: (r2 r1) clicks(T2) clicks(T1),Invariant: For all k, in expectation same number of team members

8、in top k from each team.,NEXT PICK,Radlinski, Kurup, Joachims; CIKM 2008,Dueling Bandits Problem,Continuous space bandits F E.g., parameter space of retrieval functions (i.e., weight vectors) Each time step compares two bandits E.g., interleaving test on two retrieval functions Comparison is noisy &

9、 independent,Dueling Bandits Problem,Continuous space bandits F E.g., parameter space of retrieval functions (i.e., weight vectors) Each time step compares two bandits E.g., interleaving test on two retrieval functions Comparison is noisy & independentChoose pair (ft, ft) to minimize regret:(% users

10、 who prefer best bandit over chosen ones),Example 1 P(f* f) = 0.9 P(f* f) = 0.8 Incurred Regret = 0.7Example 2 P(f* f) = 0.7 P(f* f) = 0.6 Incurred Regret = 0.3Example 3 P(f* f) = 0.51 P(f* f) = 0.55 Incurred Regret = 0.06,Modeling Assumptions,Each bandit f 2F has intrinsic value v(f) Never observed

11、 directly Assume v(f) is strictly concave ( unique f* )Comparisons based on v(f) P(f f) = ( v(f) v(f) ) P is L-LipschitzFor example:,Probability Functions,Dueling Bandit Gradient Descent,Maintain ft Compare with ft (close to ft - defined by step size) Update if ft wins comparisonExpectation of updat

12、e close to gradient of P(ft f) Builds on Bandit Gradient Descent Flaxman et al., 2005, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Ba

13、ndit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Curre

14、nt point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradi

15、ent Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent, explore step size exploit step size Current point Losing candidate Winning candidate,Dueling Bandit Gradient Descent,Analysis (Sketch),Dueling Bandit Gradient Descent Se

16、quence of partially convex functions ct(f) = P(ft f) Random binary updates (expectation close to gradient)Bandit Gradient Descent Flaxman et al., SODA 2005 Sequence of convex functions Use randomized update (expectation close to gradient) Can be extended to our setting,(Assumes more information),Ana

17、lysis (Sketch),Convex functions satisfyBoth additive and multiplicative error Depends on exploration step size Main analytical contribution: bounding multiplicative error,Regret Bound,Regret grows as O(T3/4):Average regret shrinks as O(T-1/4) In the limit, we do as well as knowing f* in hindsight, =

18、 O(1/T-1/4 ) = O(1/T-1/2 ),Practical Considerations,Need to set step size parameters Depends on P(f f)Cannot be set optimally We dont know the specifics of P(f f) Algorithm should be robust to parameter settingsSet parameters approximately in experiments,50 dimensional parameter space Value function

19、 v(x) = -xTx Logistic transfer function Random point has regret almost 1,More experiments in paper.,Web Search Simulation,Leverage web search dataset 1000 Training Queries, 367 DimensionsSimulate “users” issuing queries Value function based on NDCG10 (ranking measure) Use logistic to make probabilis

20、tic comparisonsUse linear ranking function.Not intended to compete with supervised learning Feasibility check for online learning w/ users Supervised labels difficult to acquire “in the wild”,Chose parameters with best final performance Curves basically identical for validation and test sets (no ove

21、r-fitting) Sampling multiple queries makes no difference,What Next?,Better simulation environments More realistic user modeling assumptionsDBGD simple and extensible Incorporate pairwise document preferences Deal with ranking discontinuitiesTest on real search systems Varying scales of user communit

22、ies Sheds on insight / guides future development,Extra Slides,Active vs Passive Learning,Passive Data Collection (offline) Biased by current retrieval functionPoint-wise Evaluation Design retrieval function offline Evaluate onlineActive Learning (online) Automatically propose new rankings to evaluat

23、e Our approach,Relative vs Absolute Metrics,Our framework based on relative metrics E.g., comparing pairs of results or rankings Relatively recent developmentAbsolute Metrics E.g., absolute click-through rate More common in literature Suffers from presentation bias Less robust to the many different

24、sources of noise,What Results do Users View/Click?,Joachims et al., TOIS 2007,Analysis (Sketch),Convex functions satisfyWe have both multiplicative and additive error Depends on exploration step size Main technical contribution: bounding multiplicative error,Existing results yields sub-linear bounds

25、 on:,Analysis (Sketch),We know how to bound Regret:We can show using Lipschitz and symmetry of :,More Simulation Experiments,Logistic transfer function (x) = 1/(1+exp(-x) 4 choices of value functions, set approximately,NDCG,Normalized Discounted Cumulative Gain Multiple Levels of RelevanceDCG: contr

26、ibution of ith rank position: Ex: has DCG score ofNDCG is normalized DCG best possible ranking as score NDCG = 1,Considerations,NDCG is discontinuous w.r.t. function parameters Try larger values of , Try sampling multiple queries per updateHomogenous user values NDCG10 Not an optimization concern Modeling limitationNot intended to compete with supervised learning Sanity check of feasibility for online learning w/ users,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1