ImageVerifierCode 换一换
格式:PPT , 页数:40 ,大小:1.10MB ,
资源ID:376593      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-376593.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Interpolation Methods.ppt)为本站会员(brainfellow396)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Interpolation Methods.ppt

1、Interpolation Methods,Robert A. Dalrymple Johns Hopkins University,Why Interpolation?,For discrete models of continuous systems, we need the ability to interpolate values in between discrete points. Half of the SPH technique involves interpolation of values known at particles (or nodes).,Interpolati

2、on,To find the value of a function between known values.Consider the two pairs of values (x,y):(0.0, 1.0), (1.0, 2.0)What is y at x = 0.5? That is, whats (0.5, y)?,Linear Interpolation,Given two points, (x1,y1), (x2,y2):Fit a straight line between the points.y(x) = a x +ba=(y2-y1)/(x2-x1), b= (y1 x2

3、y2 x1)/(x2-x1), Use this equation to find y values for any x1 x x2,Polynomial Interpolants,Given N (=4) data points,Find the interpolating function that goes through the points:If there were N+1 data points, the function would bewith N+1 unknown values, ai, of the Nth order polynomial,Polynomial In

4、terpolant,Force the interpolant through the four points to get four equations:,Rewriting:The solution is found by inverting p,Example,Data are: (0,2), (1,0.3975), (2, -0.1126), (3, -0.0986).Fitting a cubic polynomial through the four points gives:,Matlab code for polynomial fitting,% the data to be

5、interpolated (in 1D)x=-0.2 .44 1.0 1.34 1.98 2.50 2.95 3.62 4.13 4.64 4.94;y=2.75 1.80 -1.52 -2.83 -1.62 1.49 2.98 0.81 -2.14 -2.93 -1.81;plot(x,y,bo)n=size(x,2) % CUBIC FITp=ones(1,n)xx.*xx.*(x.*x)a=py %same as a=inv(p)*yyp=p*ahold on;plot(x,yp,k*),Note: linear and quadratic fit: redefine p,Polynom

6、ial Fit to Example,Exact: red Polynomial fit: blue,Beware of Extrapolation,An Nth order polynomial has N roots!,Exact: red,Least Squares Interpolant,For N points, we will have a fitting polynomial of order m (N-1). The least squares fitting polynomial be similar to the exact fit form: Now p is N x m

7、 matrix. Since we have fewer unknown coefficient as data points, the interpolant cannot go through each point. Define the error as the amount of “miss”Sum of the (errors)2:,Least Squares Interpolant,Minimizing the sum with respect to the coefficients a:Solving,This can be rewritten in this form,whic

8、h introduces a pseudo-inverse.,Reminder:,for cubic fit,Question,Show that the equation above leads to the following expression for the best fit straight line:,Matlab: Least-Squares Fit,%the data to be interpolated (1d)x=-0.2 .44 1.0 1.34 1.98 2.50 2.95 3.62 4.13 4.64 4.94;y=2.75 1.80 -1.52 -2.83 -1.

9、62 1.49 2.98 0.81 -2.14 -2.93 -1.81;plot(x,y,bo)n=size(x,2) % CUBIC FITp=ones(1,n)xx.*xx.*(x.*x)pinverse=inv(p*p)*pa=pinverse*yyp=p*aplot(x,yp,k*),Cubic Least Squares Example,x: -0.2 .44 1.0 1.34 1.98 2.50 2.95 3.62 4.13 4.64 4.94 y: 2.75 1.80 -1.52 -2.83 -1.62 1.49 2.98 0.81 -2.14 -2.93 -1.81,Data

10、irregularly spaced,Least Squares Interpolant,Cubic Least Squares Fit: * is the fitting polynomialo is the given data,Exact,Piecewise Interpolation,Piecewise polynomials: fit all pointsLinear: continuity in y+, y- (fit pairs of points)Quadratic: +continuity in slopeCubic splines: +continuity in secon

11、d derivative RBFAll of the above, but smoother,Radial Basis Functions,Developed to interpolate 2-D data: think bathymetry. Given depths: , interpolate to a rectangular grid.,Radial Basis Functions,2-D data:,For each position, there is an associated value:Radial basis function (located at each point)

12、where is the distance from xj,The radial basis function interpolant is:,RBF,To find the unknown coefficients i, force the interpolantto go through the data points: whereThis gives N equations for the N unknown coefficients.,RBF,Morse et al., 2001,Multiquadric RBF,MQ:RMQ:,Hardy, 1971; Kansa, 1990,R

13、BF Example,11 (x,y) pairs: (0.2, 3.00), (0.38, 2.10), (1.07, -1.86), (1.29, -2.71), (1.84, -2.29), (2.31, 0.39), (3.12, 2.91), (3.46, 1.73), (4.12, -2.11), (4.32, -2.79), (4.84, -2.25) SAME AS BEFORE,RBF Errors,Log10 sqrt (mean squared errors) versus c: Multiquadric,RBF Errors,Log10 sqrt (mean squar

14、ed errors) versus c: Reciprocal Multiquadric,Consistency,Consistency is the ability of an interpolating polynomial to reproduce a polynomial of a given order. The simplest consistency is constant consistency: reproduce unity.where, again, If gj(0) = 1, then a constraint results:,Note: Not all RBFs h

15、ave gj(0) = 1,RBFs and PDEs,Solve a boundary value problem:,The RBF interpolant is:N is the number of arbitrarily spaced points; the j are unknown coefficients to be found.,RBFs and PDEs,Introduce the interpolant into the governing equation and boundary conditions:,These are N equations for the N un

16、known constants, j,RBFs and PDEs (3),Problem with many RBF is that the N x N matrix that has to be inverted is fully populated.RBFs with small footprints (Wendland, 2005),1D:3D:,His notation:Advantages: matrix is sparse, but still N x N,Wendland 1-D RBF with Compact Support,h=1 Max=1,Moving Least Sq

17、uares Interpolant,are monomials in x for 1D (1, x, x2, x3) x,y in 2D, e.g. (1, x, y, x2, xy, y2 .)Note aj are functions of x,Moving Least Squares Interpolant,Define a weighted mean-squared error:where W(x-xi) is a weighting function that decays with increasing x-xi. Same as previous least squares ap

18、proach, except for W(x-xi),Weighting Function,q=x/h,Moving Least Squares Interpolant,Minimizing the weighted squared errors for the coefficients:,Moving Least Squares Interpolant,SolvingThe final locally valid interpolant is:,Moving Least Squares (1),% generate the data to be interpolated (1d) x=-0.

19、2 .44 1.0 1.34 1.98 2.50 2.95 3.62 4.13 4.64 4.94; y=2.75 1.80 -1.52 -2.83 -1.62 1.49 2.98 0.81 -2.14 -2.93 -1.81; plot(x,y,bo) n=size(x,2) % QUADRATIC FIT p=ones(1,n) x x.*x xfit=0.30; sum=0.0 % compute msq error for it=1:18, % fiting at 18 points xfit=xfit+0.25; d=abs(xfit-x) for ic=1:n q=d(1,ic)/

20、51; % note 0.3 works for linear fit; 0.51 for quadratic if q = 1. Wd(1,ic)=0.66*(1-1.5*q*q+0.75*q3); elseif q = 2. Wd(1,ic)=0.66*0.25*(2-q)3; else Wd(1,ic)=0.0; end end,MLS (2),Warray=diag(Wd); A=p*(Warray*p) B=p*Warray acoef=(inv(A)*B)*y % QUADRATIC FIT yfit=acoef*1 xfit xfit*xfit hold on; plot(xf

21、it, yfit,k*) sum=sum+(3.*cos(2.*pi*xfit/3.0)-yfit)2; end,MLS Fit to (Same) Irregular Data,Given data: circles; MLS: *; exact: line,h=0.51,.3,.5,1.0,1.5,Varying h Values,Conclusions,There are a variety of interpolation techniques for irregularly spaced data:Polynomial FitsBest Fit PolynomialsPiecewise PolynomialsRadial Basis FunctionsMoving Least Squares,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1