ImageVerifierCode 换一换
格式:PPT , 页数:42 ,大小:695.50KB ,
资源ID:376629      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-376629.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Introduction to Applied Spatial Econometrics.ppt)为本站会员(inwarn120)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Introduction to Applied Spatial Econometrics.ppt

1、Introduction to Applied Spatial Econometrics,Attila VargaDIMETIC Pcs, July 3, 2009,Prerequisites,Basic statistics (statistical testing) Basic econometrics (Ordinary Least Squares and Maximum Likelihood estimations, autocorrelation),EU Patent applications 2002,Outline,Introduction The nature of spati

2、al data Modelling space Exploratory spatial data analysis Spatial Econometrics: the Spatial Lag and Spatial Error models Specification diagnostics New developments in Spatial Econometrics Software options,Spatial Econometrics,A collection of techniques that deal with the peculiarities caused by spac

3、e in the statistical analysis of regional science models” Luc Anselin (1988),Increasing attention towards Spatial Econometrics in Economics,Growing interest in agglomeration economies/spillovers (Geographical Economics)Diffusion of GIS technology and increased availability of geo-coded data,The natu

4、re of spatial data,Data representation: time series (time line”) vs. spatial data (map)Spatial effects: spatial heterogeneityspatial dependence,Spatial heterogeneity,Structural instability in the forms of: Non-constant error variances (spatial heteroscedasticity) Non-constant coefficients (variable

5、coefficients, spatial regimes),Spatial dependence (spatial autocorrelation/spatial association),In spatial datasets dependence is present in all directions and becomes weaker as data locations become more and more dispersed” (Cressie, 1993)Toblers First Law of Geography: Everything is related to eve

6、rything else, but near things are more related than distant things.” (Tobler, 1979),Spatial dependence (spatial autocorrelation/spatial association),Positive spatial autocorrelation: high or low values of a variable cluster in spaceNegative spatial autocorrelation: locations are surrounded by neighb

7、ors with very dissimilar values of the same variable,EU Patent applications 2002,Spatial dependence (spatial autocorrelation/spatial association),Dependence in time and dependence in space: Time: one-directional between two observations Space: two-directional among several observations,Spatial depen

8、dence (spatial autocorrelation/spatial association),Two main reasons:Measurement error (data aggregation) Spatial interaction between spatial units,Modelling space,Spatial heterogeneity: conventional non-spatial models (random coefficients, error compontent models etc.) are suitableSpatial dependenc

9、e: need for a non-convential approach,Modelling space,Spatial dependence modelling requires an appropriate representation of spatial arrangementSolution: relative spatial positions are represented by spatial weights matrices (W),Modelling space,1. Binary contiguity weights matrices- spatial units as

10、 neighbors in different orders (first, second etc. neighborhood classes)- neighbors:- having a common border,or- being situated within a given distance band2. Inverse distance weights matrices,Modelling space,Binary contiguity matrices (rook, queen)wi,j = 1 if i and j are neighbors, 0 otherwise Neig

11、hborhood classes (first, second, etc),Modelling space,Inverse distance weights matrices,Modelling space,Row-standardization:Row-standardized spatial weights matrices:- easier interpretation of results (averageing of values)- ML estimation (computation),Modelling space,The spatial lag operator: Wy is

12、 a spatially lagged value of the variable y In case of a row-standardized W, Wy is the average value of the variable: in the neighborhood (contiguity weights) in the whole sample with the weight decreasing with increasing distance (inverse distance weights),Exploratory spatial data analysis,Measurin

13、g global spatial association: The Morans I statistic:a) I = N/S0 Si,j wij (xi -m)(xj - m) / Si(xi -m)2normalizing factor: S0 =Si,j wij(w is not row standardized)b) I* = Si,j wij (xi -m)(xj - m) / Si(xi -m)2(w is row standardized),Global spatial association,Basic principle behind all global measures:

14、- The Gamma indexG = Si,j wij cij Neighborhood patterns and value similarity patterns compared,Global spatial association,Significance of global clustering: test statistic compared with values under H0 of no spatial autocorrelation- normality assumption- permutation approach,Local indicatiors of spa

15、tial association (LISA),The Moran scatterplotidea: Morans I is a regression coefficient of a regression of Wz on z when w is row standardized:I=zWz/zz (where z is the variable in deviations from the mean)- regression line: general pattern- points on the scatterplot: local tendencies- outliers: extre

16、me to the central tendency (2 sigma rule)- leverage points: large influence on the central tendency (2 sigma rule),Moran scatterplot,Local indicators of spatial association (LISA),B. The Local Moran statisticIi = ziSjwijzjsignificance tests: randomization approach,Spatial Econometrics,The spatial la

17、g modelThe spatial error model,The spatial lag model,Lagged values in time: yt-kLagged values in space: problem (multi-oriented, two directional dependence) Serious loss of degrees of freedomSolution: the spatial lag operator, Wy,The spatial lag model,The spatial lag model,EstimationProblem: endogen

18、eity of wy (correlated with the error term) OLS is biased and inconsistent Maximum Likelihood (ML) Instrumental Variables (IV) estimation,The spatial lag model,ML estimation: The Log-Likelihood function,The Spatial Lag model,IV estimation (2SLS) Suggested instruments: spatially lagged exogenous vari

19、ables,The Spatial Error model,The Spatial Error model,OLS: unbiased but inefficientML estimation,Specification tests,Steps in estimation,Estimate OLS Study the LM Error and LM Lag statistics with ideally more than one spatial weights matrices The most significant statistic guides you to the right mo

20、del Run the right model (S-Err or S-Lag),Example: Varga (1998),Spatial econometrics: New developments,Estimation: GMM Spatial panel models Spatial Probit, Logit, Tobit,Study materials,Introductory: Anselin: Spacestat tutorial (included in the course material) Anselin: Geoda users guide (included in the course material)Advanced: Anselin: Spatial Econometrics, Kluwer 1988,Software options,GEODA easiest to access and use SpaceStat R Matlab routines,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1