ImageVerifierCode 换一换
格式:PPT , 页数:32 ,大小:187KB ,
资源ID:376667      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-376667.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Introduction to ILP.ppt)为本站会员(amazingpat195)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Introduction to ILP.ppt

1、Introduction to ILP,ILP = Inductive Logic Programming = machine learning logic programming = learning with logic,Introduced by Muggleton in 1992,(Machine) Learning,The process by which relatively permanent changes occur in behavioral potential as a result of experience. (Anderson) Learning is constr

2、ucting or modifying representations of what is being experienced. (Michalski) A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. (Mitchell),Machine Lear

3、ning Techniques,Decision tree learning Conceptual clustering Case-based learning Reinforcement learning Neural networks Genetic algorithms and Inductive Logic Programming,Why ILP ? - Structured data,Seed example of East-West trains (Michalski)What makes a train to go eastward ?,Why ILP ? Structured

4、data,Mutagenicity of chemical molecules (King, Srinivasan, Muggleton, Sternberg, 1994)What makes a molecule to be mutagenic ?,Why ILP ? multiple relations,This is related to structured data,has_car,car_properties,Why ILP ? multiple relations,Genealogy example: Given known relations father(Old,Young)

5、 and mother(Old,Young) male(Somebody) and female(Somebody) learn new relations parent(X,Y) :- father(X,Y). parent(X,Y) :- mother(X,Y). brother(X,Y) :-male(X),father(Z,X),father(Z,Y).Most ML techniques cant use more than 1 relation e.g.: decision trees, neural networks, ,Why ILP ? logical foundation,

6、Prolog = Programming with Logicis used to represent: Background knowledge (of the domain): facts Examples (of the relation to be learned): facts Theories (as a result of learning): rules Supports 2 forms of logical reasoning Deduction Induction,Prolog - definitions,Variables: X, Y, Something, Somebo

7、dy Terms: arthur, 1, 1,2,3 Predicates: father/2, female/1Facts: father(christopher,victoria). female(victoria). Rules: parent(X,Y) :- father(X,Y).,Logical reasoning: deduction,From rules to facts,B T |- E,mother(penelope,victoria). mother(penelope,arthur). father(christopher,victoria). father(christ

8、opher,arthur).,parent(X,Y) :- father(X,Y). parent(X,Y) :- mother(X,Y).,parent(penelope,victoria). parent(penelope,arthur). parent(christopher,victoria). parent(christopher,arthur).,Logical reasoning: induction,From facts to rules,B E |- T,mother(penelope,victoria). mother(penelope,arthur). father(ch

9、ristopher,victoria). father(christopher,arthur).,parent(X,Y) :- father(X,Y). parent(X,Y) :- mother(X,Y).,parent(penelope,victoria). parent(penelope,arthur). parent(christopher,victoria). parent(christopher,arthur).,Induction of a classifier or Concept Learning,Most studied task in Machine Learning G

10、iven: background knowledge B a set of training examples E a classification c C for each example e Find: a theory T (or hypothesis) such that B T |- c(e), for all e E,Induction of a classifier: example,Example of East-West trains B: relations has_car and car_properties (length, roof, shape, etc.)ex.:

11、 has_car(t1,c11), shape(c11,bucket) E: the trains t1 to t10 C: east, west,Why ILP ? - Structured data,Seed example of East-West trains (Michalski)What makes a train to go eastward ?,Induction of a classifier: example,Example of East-West trains B: relations has_car and car_properties (length, roof,

12、shape, etc.)ex.: has_car(t1,c11) E: the trains t1 to t10 C: east, west,Possible T: east(T) :-has_car(T,C), length(C,short), roof(C,_).,Induction of a classifier: example,Example of mutagenicity B: relations atom and bondex.: atom(mol23,atom1,c,195). bond(mol23,atom1,atom3,7). E: 230 molecules with k

13、nown classification C: active and nonactive w.r.t. mutagenicityPossible T:active(Mol) :-atom(Mol,A,c,22), atom(Mol,B,c,10),bond(Mol,A,B,1).,c22,c10,Learning as search,Given: Background knowledge B Theory Description Language T Positives examples P (class +) Negative examples N (class -) A covering r

14、elation covers(B,T,e) Find: a theory that covers all positive examples (completeness) no negative examples (consistency),Learning as search,Covering relation in ILP covers(B,T,e) B T |- e A theory is a set of rules Each rule is searched separately (efficiency) A rule must be consistent (cover no neg

15、atives), but not necessary complete Separate-and-conquer strategy Remove from P the examples already covered,Space exploration,Strategy? Random walk Redundancy, incompleteness of the search Systematic according to some ordering Better control = no redundancy, completeness The ordering may be used to

16、 guide the search towards better rulesWhat kind of ordering?,Generality ordering,Rule 1 is more general than rule 2 = Rule 1 covers more examples than rule 2 If a rule is consistent (covers no negatives)then every specialisation of it is consistent too If a rule is complete (covers all positives)the

17、n every generalisation of it is complete too Means to prune the search space 2 kinds of moves: specialisation and generalisation Common ILP ordering: -subsumption,Generality ordering,parent(X,Y):-,parent(X,Y):- female(X),parent(X,Y) :- father(X,Y),parent(X,Y) :- female(X), mother(X,Y),parent(X,Y) :-

18、 female(X), father(X,Y),consistent rule,specialisation,Search biases,“Bias refers to any criterion for choosing one generalization over another other than strict consistency with the observed training instances.” (Mitchell) Restrict the search space (efficiency) Guide the search (given domain knowle

19、dge) Different kinds of bias Language bias Search bias Strategy bias,Choice of predicates:roof(C,flat) ? roof(C) ? flat(C) ? Types of predicates :east(T) :- roof(T), roof(C,3) Modes of predicates :east(T) :- roof(C,flat)east(T) :- has_car(T,C), roof(C,flat) Discretization of numerical values,Languag

20、e bias,Search bias,The moves direction in the search space Top-down start: the empty rule (c(X) :- .) moves: specialisations Bottom-up start: the bottom clause ( c(X) :- B.) moves: generalisations Bi-directional,Strategy bias,Heuristic search for a best rule Hill-climbing: Keep only one rule efficie

21、nt but can miss global maximum Beam search: also keep k rules for back-tracking less greedy Best-first search: keep all rules more costly but complete search,A generic ILP algorithm,procedure ILP(Examples)Initialize(Rules, Examples) repeatR = Select(Rules, Examples)Rs = Refine(R, Examples)Rules = Re

22、duce(Rules+Rs, Examples) until StoppingCriterion(Rules, Examples) return(Rules),A generic ILP algorithm,Initialize(Rules,Examples): initialize a set of theories as the search starting points Select(Rules,Examples): select the most promising candidate rule R Refine(R,Examples): returns the neighbours

23、 of R (using specialisation or generalisation) Reduce(Rules,Examples): discard unpromising theories (all but one in hill-climbing, none in best-first search),ILPnet2 www.cs.bris.ac.uk/ILPnet2/,Network of Excellence in ILP in Europe 37 universities and research institutes Educational materials Public

24、ations Events (conferences, summer schools, ) Description of ILP systems Applications,ILP systems,FOIL (Quinlan and Cameron-Jones 1993): top-down hill-climbing search Progol (Muggleton, 1995): top-down best-first search with bottom clause Golem (Muggleton and Feng 1992): bottom-up hill-climbing sear

25、ch LINUS (Lavrac and Dzeroski 1994): propositionalisation Aleph (Progol), Tilde (relational decision trees), ,ILP applications,Life sciences mutagenecity, predicting toxicology protein structure/folding Natural language processing english verb past tense document analysis and classification Engineer

26、ing finite element mesh design Environmental sciences biodegradability of chemical compounds,The end,A few books on ILP J. Lloyd. Logic for learning: learning comprehensible theories from structured data. 2003. S. Dzeroski and N. Lavrac, editors. Relational Data Mining. September 2001. L. De Raedt, editor. Advances in Inductive Logic Programming. 1996. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Applications. 1994.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1