ImageVerifierCode 换一换
格式:PPT , 页数:18 ,大小:247.50KB ,
资源ID:376670      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-376670.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Introduction to Infrared Spectroscopy.ppt)为本站会员(visitstep340)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Introduction to Infrared Spectroscopy.ppt

1、Introduction to Infrared Spectroscopy,Chapter 16 Instrumental Analysis,Definition of Infrared Spectroscopy,The absorption of light, as it passes through a medium, varies linearly with the distance the light travels and with concentration of the absorbing medium. Where a is the absorbance, the Greek

2、lower-case letter epsilon is a characteristic constant for each material at a given wavelength (known as the extinction coefficient or absorption coefficient), c is concentration, and l is the length of the light path, the absorption of light may be expressed by the simple equation a= epsilon times

3、c times l.,Infrared Spectroscopy,Infrared spectroscopy is the measurement of the wavelength and intensity of the absorption of mid-infrared light by a sample. Mid-infrared is energetic enough to excite molecular vibrations to higher energy levels. The wavelength of infrared absorption bands is chara

4、cteristic of specific types of chemical bonds, and infrared spectroscopy finds its greatest utility for identification of organic and organometallic molecules. The high selectivity of the method makes the estimation of an analyte in a complex matrix possible.,Example of IR,Theory of Infrared Absorpt

5、ion Spectroscopy,For a molecule to absorb IR, the vibrations or rotations within a molecule must cause a net change in the dipole moment of the molecule. The alternating electrical field of the radiation (remember that electromagnetic radiation consists of an oscillating electrical field and an osci

6、llating magnetic field, perpendicular to each other) interacts with fluctuations in the dipole moment of the molecule. If the frequency of the radiation matches the vibrational frequency of the molecule then radiation will be absorbed, causing a change in the amplitude of molecular vibration.,Molecu

7、lar Rotations,Rotational transitions are of little use to the spectroscopist. Rotational levels are quantized, and absorption of IR by gases yields line spectra. However, in liquids or solids, these lines broaden into a continuum due to molecular collisions and other interactions.,Molecular Rotation

8、s (cont),Vibrational-Rotational Transitions,In general, a molecule which is an excited vibrational state will have rotational energy and can lose energy in a transition which alters both the vibrational and rotational energy content of the molecule. The total energy content of the molecule is given

9、by the sum of the vibrational and rotational energies. For a molecule in a specific vibrational and rotational state, denoted by the pair of quantum numbers (v, J), we can write its energy as: E(v, J)=Evib(v) + Erot(J),Transitions (cont),The energies of these three transitions form a very distinctiv

10、e pattern. If we consider the lower vibrational state to be the initial state, then we can label the absorption lines as follows. Transitions for which the J quantum number decreases by 1 are called P-branch transitions, those which increase by 1 are called R-branch transitions and those which are u

11、nchanged are called Q-branch transitions.,Molecular Vibrations,In order to predict equilibrium stable-isotope fractionations, it is necessary to know the characteristic frequencies of molecular vibrations. It is also necessary to know how much each vibrational frequency in a molecule changes when a

12、heavy isotope is substituted for a light one. Vibrational frequencies for isotopically substituted molecules are not always known, so it is often necessary to use some type of force-field model to predict them. Molecular vibrations are also important in understanding infrared absorption and the mech

13、anisms and kinetics of chemical reactions. Frequencies are most commonly measured with infrared or Raman spectroscopy. Rotational-vibrational spectroscopy, isotope substitution, and many forms of force-field modeling are used to determine characteristic atomic motions.,Vibrational Motion,Subdivided

14、into so-called normal modes of vibration which rapidly increase with the number of atoms in the molecule. Each of these normal vibrational modes contributes RT to the average molar energy of the substance and is a primary reason why heat capacities increase with molecular complexity. If there are Xv

15、ib modes of vibration, then the vibrational energy contributes Xvib(RT) to the average molar energy of the substance.,Stretching and Bending,Stretching Vibrations,Bending Vibrations,Quantum Treatment of Vibrations,Transitions in vibrational energy levels can be brought about by absorption of radiati

16、on, provided the energy of the radiation exactly matches the difference in energy levels between the vibrational quantum states and provided also that the vibration causes a fluctuation in dipole. Infrared measurements permit the evaluation of the force constants for various types of chemical bonds.

17、,Infrared Instruments,An infrared spectrophotometer is an instrument that passes infrared light through an organic molecule and produces a spectrum that contains a plot of the amount of light transmitted on the vertical axis against the wavelength of infrared radiation on the horizontal axis. In inf

18、rared spectra the absorption peaks point downward because the vertical axis is the percentage transmittance of the radiation through the sample. Absorption of radiation lowers the percentage transmittance value. Since all bonds in an organic molecule interact with infrared radiation, IR spectra provide a considerable amount of structural data.,Infrared Instruments,References,http:/www.acs.orghttp:/www.cas.orghttp:/www.chemcenter/orghttp:/www.sciencemag.orghttp:/www.shu.ac.uk/schools/sci/chem/tutorials/molspec/irspec/.htmhttp:/www.kerouac.pharm.uky.edu/asrg/wave/wavehp.htmlhttp:/hiq.linde-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1