ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:148KB ,
资源ID:376689      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-376689.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Introduction to Neural Networks.ppt)为本站会员(李朗)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Introduction to Neural Networks.ppt

1、Introduction to Neural Networks,John Paxton Montana State University Summer 2003,Chapter 7: A Sampler Of Other Neural Nets,Optimization Problems Common Extensions Adaptive Architectures Neocognitron,I. Optimization Problems,Travelling Salesperson Problem. Map coloring. Job shop scheduling. RNA secon

2、dary structure.,Advantages of Neural Nets,Can find near optimal solutions. Can handle weak (desirable, but not required) constraints.,TSP Topology,Each row has 1 unit that is on Each column has 1 unit that is on,City ACity BCity C,1st 2nd 3rd,Boltzmann Machine,Hinton, Sejnowski (1983) Can be modelle

3、d using Markov chains Uses simulated annealing Each row is fully interconnected Each column is fully interconnected,Architecture,ui,j connected to uk,j+1 with di,k ui1 connected to ukn with -dik,U11,Un1,Unn,U1n,b,-p,Algorithm,1. Initialize weights b, p p b p greatest distance between cities Initiali

4、ze temperature T Initialize activations of units to random binary values,Algorithm,2. while stopping condition is false, do steps 3 8 3. do steps 4 7 n2 times (1 epoch)4. choose i and j randomly 1 = i, j = n uij is candidate to change state,Algorithm,5. Compute c = 1 2uijb + S S ukm (-p)where k i, m

5、 j 6. Compute probability to accept changea = 1 / (1 + e(-c/T) ) 7. Accept change if random number 01 a. If change, uij = 1 uij 8. Adjust temperature T = .95T,Stopping Condition,No state change for a specified number of epochs. Temperature reaches a certain value.,Example,T(0) = 20 units are on init

6、ially b = 60 p = 70 10 cities, all distances less than 1 200 or fewer epochs to find stable configuration in 100 random trials,Other Optimization Architectures,Continuous Hopfield Net Gaussian Machine Cauchy Machine Adds noise to input in attempt to escape from local minima Faster annealing schedule

7、 can be used as a consequence,II. Extensions,Modified Hebbian Learning Find parameters for optimal surface fit of training patterns,Boltzmann Machine With Learning,Add hidden units 2-1-2 net below could be used for simple encoding/decoding (data compression),x1,x2,z1,y2,y1,Simple Recurrent Net,Learn

8、 sequential or time varying patterns Doesnt necessarily have steady state output input units context units hidden units output units,Architecture,x1,xn,cp,c1,zp,z1,ym,y1,Simple Recurrent Net,f(ci(t) = f(zi(t-1) f(ci(0) = 0.5 Can use backpropagation Can learn string of characters,Example: Finite Stat

9、e Automaton,4 xi 4 yi 2 zi 2 ci,BEGIN,A,B,END,Backpropagation In Time,Rumelhart, Williams, Hinton (1986) Application: Simple shift register,x1,x2,z1,y2,y1,x2,x1,1 (fixed),1 (fixed),Backpropagation Training for Fully Recurrent Nets,Adapts backpropagation to arbitrary connection patterns.,III. Adaptiv

10、e Architectures,Probabilistic Neural Net (Specht 1988)Cascade Correlation (Fahlman, Lebiere 1990),Probabilistic Neural Net,Builds its own architecture as training progresses Chooses class A over class B if hAcAfA(x) hBcBfB(x) cA is the cost of classifying an example as belonging to A when it belongs

11、 to B hA is the a priori probability of an example belonging to class A,Probabilistic Neural Net,fA(x) is the probability density function for class A, fA(x) is learned by the net zA1: pattern unit, fA: summation unit,x1,xn,zBk,zB1,zAj,zA1,fB,fA,y,Cascade Correlation,Builds own architecture while tr

12、aining progresses Tries to overcome slow rate of convergence by other neural nets Dynamically adds hidden units (as few as possible) Trains one layer at a time,Cascade Correlation,Stage 1,x0,x1,x2,y2,y1,Cascade Correlation,Stage 2 (fix weights into z1),x0,x1,x2,y2,y1,z1,Cascade Correlation,Stage 3 (

13、fix weights into z2),x0,x1,x2,y2,y1,z1,z2,Algorithm,1. Train stage 1. If error is not acceptable, proceed.2. Train stage 2. If error is notacceptable, proceed.3. Etc.,IV. Neocognitron,Fukushima, Miyako, Ito (1983) Many layers, hierarchical Very spare and localized connections Self organizing Supervi

14、sed learning, layer by layer Recognizes handwritten 0, 1, 2, 3, 9, regardless of position and style,Architecture,Architecture,S layers respond to patterns C layers combine results, use larger field of view For example S11 responds to 0 0 0 1 1 1 0 0 0,Training,Progresses layer by layer S1 connections to C1 are fixed C1 connections to S2 are adaptable A V2 layer is introduced between C1 and S2, V2 is inhibatory C1 to V2 connections are fixed V2 to S2 connections are adaptable,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1