ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:271.50KB ,
资源ID:376707      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-376707.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Introduction to Quantum Information ProcessingCS 467 - CS .ppt)为本站会员(孙刚)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Introduction to Quantum Information ProcessingCS 467 - CS .ppt

1、1,Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681,Richard Cleve DC 3524 clevecs.uwaterloo.caCourse web site at: http:/www.cs.uwaterloo.ca/cleve/courses/cs467,Lecture 11 (2005),2,Contents,Continuation of density matrix formalismTaxonomy of various

2、normal matricesBloch sphere for qubitsGeneral quantum operations,3,Continuation of density matrix formalismTaxonomy of various normal matricesBloch sphere for qubitsGeneral quantum operations,4,Recap: density matrices (I),The density matrix of the mixed state (1, p1), (2, p2), ,(d, pd) is:,1. & 2. 0

3、 + 1 and 0 1 both have,Examples (from previous lecture):,5,Recap: density matrices (II),7. The first qubit of 01 10,Examples (continued):,has:,.? (later),6,Recap: density matrices (III),Applying U to yields U U,Measuring state with respect to the basis 1, 2,., d,yields: k th outcome with probability

4、 k kand causes the state to collapse to k k,Quantum operations in terms of density matrices:,Since these are expressible in terms of density matrices alone (independent of any specific probabilistic mixtures), states with identical density matrices are operationally indistinguishable,7,Characterizin

5、g density matrices,Three properties of :Tr = 1 (Tr M = M11 + M22 + . + Mdd ) = (i.e. is Hermitian) 0, for all states ,Moreover, for any matrix satisfying the above properties, there exists a probabilistic mixture whose density matrix is ,Exercise: show this,8,Continuation of density matrix formalism

6、Taxonomy of various normal matricesBloch sphere for qubitsGeneral quantum operations,9,Normal matrices,Definition: A matrix M is normal if MM = MM,Theorem: M is normal iff there exists a unitary U such that M = UDU, where D is diagonal (i.e. unitarily diagonalizable),Examples of abnormal matrices:,i

7、s not even diagonalizable,is diagonalizable, but not unitarily,10,Unitary and Hermitian matrices,with respect to some orthonormal basis,Normal:,Unitary: MM = I which implies |k |2 = 1, for all k,Hermitian: M = M which implies k R, for all k,Question: which matrices are both unitary and Hermitian?,An

8、swer: reflections (k +1,1, for all k),11,Positive semidefinite,Positive semidefinite: Hermitian and k 0, for all k,Theorem: M is positive semidefinite iff M is Hermitian and, for all , M 0,(Positive definite: k 0, for all k),12,Projectors and density matrices,Projector: Hermitian and M 2 = M, which

9、implies that M is positive semidefinite and k 0,1, for all k,Density matrix: positive semidefinite and Tr M = 1, so,Question: which matrices are both projectors and density matrices?,Answer: rank-one projectors (k = 1 if k = k0 and k = 0 if k k0 ),13,Taxonomy of normal matrices,14,Continuation of de

10、nsity matrix formalismTaxonomy of various normal matricesBloch sphere for qubitsGeneral quantum operations,15,Bloch sphere for qubits (I),Consider the set of all 2x2 density matrices ,Note that the coefficient of I is , since X, Y, Z have trace zero,They have a nice representation in terms of the Pa

11、uli matrices:,Note that these matricescombined with Iform a basis for the vector space of all 2x2 matrices,We will express density matrices in this basis,16,Bloch sphere for qubits (II),We will express,First consider the case of pure states , where, without loss of generality, = cos()0 + e2isin()1 (

12、, R),Therefore cz = cos(2), cx = cos(2)sin(2), cy = sin(2)sin(2),These are polar coordinates of a unit vector (cx , cy , cz) R3,17,Bloch sphere for qubits (III),Pure states are on the surface, and mixed states are inside (being weighted averages of pure states),Note that orthogonal corresponds to an

13、tipodal here,18,Continuation of density matrix formalismTaxonomy of various normal matricesBloch sphere for qubitsGeneral quantum operations,19,General quantum operations (I),Example 1 (unitary op): applying U to yields U U,General quantum operations (a.k.a. “completely positive trace preserving map

14、s”, “admissible operations” ): Let A1, A2 , , Am be matrices satisfying,20,General quantum operations (II),Example 2 (decoherence): let A0 = 00 and A1 = 11,This quantum op maps to 0000 + 1111,Corresponds to measuring “without looking at the outcome”,For = 0 + 1,21,General quantum operations (III),Ex

15、ample 3 (trine state “measurent”):,Let 0 = 0, 1 = 1/20 + 3/21, 2 = 1/20 3/21,Then,The probability that state k results in “outcome” Ak is 2/3, and this can be adapted to actually yield the value of k with this success probability,Define A0 = 2/300A1= 2/311 A2= 2/322,22,General quantum operations (IV),Example 4 (discarding the second of two qubits): Let A0 = I0 and A1 = I1,State becomes ,State becomes,Note 1: its the same density matrix as for (0, ), (1, ),Note 2: the operation is the partial trace Tr2 ,23,THE END,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1