ImageVerifierCode 换一换
格式:PPT , 页数:44 ,大小:163.50KB ,
资源ID:376709      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-376709.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Introduction to R Lecture 3- Data Manipulation.ppt)为本站会员(吴艺期)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Introduction to R Lecture 3- Data Manipulation.ppt

1、Introduction to R Lecture 3: Data Manipulation,Andrew Jaffe 9/27/10,Overview,Practice Solutions Indexing Data Management Data Summaries,Practice,Make a 2 x 2 table of sex and dog, table(dat$sex, dat$dog)no yesF 264 229M 254 253,Practice,Create a BMI variable using height and weight, dat$bmi = dat$we

2、ight*703/dat$height2 head(dat$bmi) 1 23.44931 31.29991 25.69422 23.89881 23.11172 28.13324,Practice,Create an overweight variable, which gives the value 1 for people with BMI 30 and 0 otherwise, dat$overweight = ifelse(dat$bmi 30, 1, 0) head(dat$overweight) 1 0 1 0 0 0 0,Practice,Add those two varia

3、bles to the datasets and save it as a text file somewhere,write.table(dat, “lec2_practice.txt“, quote = F, row.names = F, sep=“t“),Overview,Practice Solutions Indexing Data Management Data Summaries,Indexing,Vectors: vectorindex takes index elements from vector and returns them, x = c(1,3,7,34,435)

4、x1 1 1 xc(1,4) 1 1 34 x2:4 1 3 7 34, 2:4 1 2 3 4,Indexing,Replace elements in a vector combining indexing, is.na(), and rep(), x = c(1,3,NA,6,NA,8) which(is.na(x) 1 3 5 xis.na(x) = 0 # or rep(0) x 1 1 3 0 6 0 8,Indexing,Data.frames/matrices: datrow,col Can subset/extract a row: datrow, Can subset/ex

5、tract a column: dat,col, x = matrix(c(1,2,3,4,5,6), ncol = 3) x,1 ,2 ,3 1, 1 3 5 2, 2 4 6,Indexing, x1, 1 1 3 5 x,1 1 1 2 x1,1 1 1 x1:2,1:2,1 ,2 1, 1 3 2, 2 4, x,1 ,2 ,3 1, 1 3 5 2, 2 4 6,Indexing, x1, = rep(1) x,1 ,2 ,3 1, 1 1 1 2, 2 4 6 x,1 = rep(2) x,1 ,2 ,3 1, 2 1 1 2, 2 4 6, x,1 ,2 ,3 1, 1 3 5

6、2, 2 4 6,Overview,Practice Solutions Indexing Data Management Data Summaries,Data Management,An aside: save() and load() save(obj_1,obj_n, file = “filename.rda”) Saves R objects (vectors, matrices, or data.frames) as an .rda file (similar to .dta) load(“filename.rda”) Loads whatever files were saved

7、 in the .rda Easier than reading/writing tables,Data Management,Your workspace can be saved an .rda file You get asked this every time you close R save.image(“filename.Rdata”) saves all objects in your workspace (what ls() returns) Each folder might have its own .Rdata file Doing this is personal pr

8、eference - if you have a script and its a quick analysis, probably dont need a saved image,Data Management,“lec3_data.rda” can be downloaded from the website Similar method to read in the data: load(“lec3_data.rda”) Put in the same directory as your script Set your working directory Use the full fil

9、ename,Data Management,What are the dimensions of the dataset?,Data Management,What are the dimensions of the dataset?, dim(dog_dat) 1 482 6,Data Management,How many dogs are in this dataset? Is this dataset unique?,Data Management,How many dogs are in this dataset? Is this dataset unique?, length(un

10、ique(dog_dat$dog_id) 1 482 length(dog_dat$dog_id) 1 482,Data Management,What are the column/variable names?,Data Management,What are the column/variable names?, head(dog_dat)dog_id owner_id dog_type dog_wt_mo1 dog_len_mo1 dog_food_mo1 1 1 394 lab 51.5 13.8 25.8 2 2 571 lab 48.3 24.6 33.1 3 3 986 poo

11、dle 59.3 22.7 29.2 4 4 750 lab 46.4 22.3 27.6 5 5 882 husky 48.0 20.9 28.0 6 6 762 poodle 47.0 19.1 31.0, names(dog_dat) 1 “dog_id“ “owner_id“ “dog_type” “dog_wt_mo1“ 5 “dog_len_mo1“ “dog_food_mo1“,Data Management,Some explanation of the variables dog_id: id of dog owner_id: id of owner dog_type: ty

12、pe of dog dog_wt_mo1: dog weight at month 1 (baseline) dog_len_mo1: dog length at month 1 dog_food_mo1: baseline dog food consumption,Data Management,Subsetting data: separate data into two data.frames based on a variable:, lab = dog_datdog_dat$dog_type = “lab“, head(lab)dog_id owner_id dog_type dog

13、wt_mo1 dog_len_mo1 dog_food_mo1 1 1 394 lab 51.5 13.8 25.8 2 2 571 lab 48.3 24.6 33.1 4 4 750 lab 46.4 22.3 27.6 7 7 664 lab 53.0 18.2 25.7 13 13 713 lab 48.3 23.4 31.8 15 15 480 lab 46.6 20.8 31.3,Data Management, lab = dog_datdog_dat$dog_type = “lab“, head(which(dog_dat$dog_type = “lab“) 1 1 2 4

14、7 13 15,Taking those specific rows, and all of the columns of the original data,Data Management, lab2 = dog_datdog_dat$dog_type = ”lab“,1:3 head(lab2,3)dog_id owner_id dog_type 1 1 394 lab 2 2 571 lab 4 4 750 lab,Taking those specific rows, and the first 3 columns of the original data,Data Managemen

15、t,Note (stata users) that we have two data.frames in our workspace! ls(),Data Management,Remember we used ifelse() for binary conversions?, heavy = ifelse(dog_dat,4 mean(dog_dat,4), 1, 0) head(heavy) 1 1 0 1 0 0 0,Note that you can use column indexing instead of $name for data.frames,This is just th

16、e mean of that column: mean(dog_dat,4) 1 49.69606,Data Management,The cut() function can split data into more groups quintiles, tertiles, etc cut(dat, breaks) dat is a vector of numerical or integer values breaks is where to make the cuts,Data Management,If breaks is one number (n), it splits the da

17、ta into n equal sized groups, x = 1:5 # 1 2 3 4 5 or seq(1,5) cut(x, 2) 1 (0.996,3 (0.996,3 (0.996,3 (3,5 (3,5 Levels: (0.996,3 (3,5 cut(x, 3) 1 (0.996,2.33 (0.996,2.33 (2.33,3.67 (3.67,5 (3.67,5 Levels: (0.996,2.33 (2.33,3.67 (3.67,5 cut(x,3, labels=F) # returns integers of groups, not factors 1 1

18、1 2 3 3,FACTORS!,Data Management,What is a factor? Similar to terms like category and enumerated type Has levels associated with it could be ordinal if factor(,ordered = T) Must only have an as.character() method and be sortable to be converted to a factor using factor(),Data Management,If breaks ar

19、e more than one number, splits the vector by those numbers, x = 1:10 cut(x, c(0,3,6,10)1 (0,3 (0,3 (0,3 (3,6 (3,6 (3,6 (6,10 (6,10 (6,10 (6,10 Levels: (0,3 (3,6 (6,10 cut(x, c(0,3,6,10), FALSE)1 1 1 1 2 2 2 3 3 3 3,Data Management,Something more applicable for cut: the quantile(x,probs) function - d

20、efault probs is seq(0,1,0.25), ie quintiles seq(start, end, by) creates a sequence from the starting value, to the ending value by the specified amount seq(0,10) 0:10 # 0, 1, 2, , 9, 10 seq(0,10,0.5) # 0, 0.5, 1.0, , 9.5, 10.0,Data Management,Now for stuff with our data:, quantile(dog_dat$dog_wt_mo1

21、)0% 25% 50% 75% 100% 10.600 44.600 49.200 55.275 72.500 quantile(dog_dat$dog_wt_mo1, seq(0,1,0.5)0% 50% 100% 10.6 49.2 72.5 quantile(dog_dat$dog_wt_mo1, 0.6)60% 51.5 quantile(dog_dat$dog_wt_mo1, c(0.4,0.6)40% 60% 47.24 51.50,Data Management, sp = quantile(dog_dat$dog_wt_mo1, 0.75) big = ifelse(dog_d

22、at$dog_wt_mo1 sp, 1, 0) head(big) 1 0 0 1 0 0 0, quant = cut(dog_dat$dog_wt_mo1, quantile(dog_dat$dog_wt_mo1) head(quant) 1 (49.2,55.3 (44.6,49.2 (55.3,72.5 (44.6,49.2 (44.6,49.2 (44.6,49.2 Levels: (10.6,44.6 (44.6,49.2 (49.2,55.3 (55.3,72.5,Overview,Practice Solutions Indexing Data Management Data

23、Summaries,Data Summaries,This is some of the only “statistics” in the course R functions can perform statistics well, here are some basics for summaries,Data Summaries,mean(dat, na.rm = F) median(dat, na.rm=F), x = c(1,2,4,6,NA) mean(x) 1 NA mean(x, na.rm=T) 1 3.25 median(x,na.rm=T) 1 3,Data Summari

24、es, x = c(1,2,4,7,9,11) mean(x) 1 5.666667 median(x) 1 5.5 var(x) 1 15.86667 sd(x) 1 3.983298,Data Summaries,Lets combine some concepts! Take the mean food consumption of all of the labs,Data Summaries,First, figure out which entries correspond to dogs that are labs, Index = which(dog_dat$dog_type =

25、 “lab“) head(Index) 1 1 2 4 7 13 15,Data Summaries,Then, take the mean of the data you want, mean(dog_dat$dog_food_mo1Index) 1 30.04,Note that we first created a vector of dog food, then indexed it - there are no commas needed for the indexing (because its a vector),Data Summaries,Combined into 1 li

26、ne/command:, mean(dog_dat$dog_food_mo1dog_dat$dog_type = “lab“) 1 30.04, mean(dog_datdog_dat$dog_type = “lab“,6) 1 30.04 mean(dog_datdog_dat$dog_type = “lab“,“dog_food_mo1“) 1 30.04,Pick your favorite theyre all the same! Note that the first option might make the most sense,Practice,Compute the average dog weight, dog length, and dog food consumption for each dog type at baseline Reminder: the dog types are lab, poodle, husky, and retriever,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1