ImageVerifierCode 换一换
格式:PPT , 页数:43 ,大小:324KB ,
资源ID:377815      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-377815.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(A Competitive Model of Superstars.ppt)为本站会员(吴艺期)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

A Competitive Model of Superstars.ppt

1、A Competitive Model of Superstars,Timothy Perri Department of Economics Appalachian State UniversityPresented at Virginia Tech January 21, 2006,2, Sherwin Rosen (AER, 1981) developed the notion of superstars., Rosen assumed more talented individuals produce higher quality products. Superstar effects

2、 imply earnings are convex in quality, the highest quality producers earn a disproportionately large share of market earnings, & the possibility of only a few sellers in the market.,3,R* = revenue given the profit-maximizing quantity,z = product quality,R*,4, Rosen argued superstar effects are the r

3、esult of two phenomena: imperfect substitution among products, with demand for higher quality increasing more than proportionally, and technology such that one or a few sellers could profitably satisfy market demand.,5, Herein, a competitive model is developed in which: 1) there are many potential a

4、nd active firms; 2) some fraction of the potential producers with the lowest quality level could satisfy market demand; 3) complete arbitrage occurs between prices of goods with different quality; and4) a few firms with higher quality earn a disproportionately large share of market revenue because t

5、heir revenue increases with quality at an increasing rate.,6, The usual explanations for superstar effects-imperfect substitution between sellers, and some form of joint consumption, with marginal cost declining as quality increases-are not necessary.,7, A firms revenue can be positive and convex in

6、 quality when cost increases in quality at a decreasing rate. Without the requirements of imperfect substitution and joint consumption, there may be many markets that could contain superstar effects.,8,EvidenceKrueger (JOLE, 2005) identifies significant superstar effects for music concerts that have

7、 become even larger in recent years. He arguesthe time and effort to perform a song should not have changed much in over time.,9, It is also unlikely the cost of performing asong depends significantly on the qualityof the musicians. Further, the technology of reaching more buyers for a live performa

8、nce is much different than it is for selling additional CDs .,10,“Pavarotti can, with the same effort, produce one CD of Tosca or 100 million CDs of Tosca.if most view Pavarotti as even slightlybetter than Domingo, he will sell many moreCDs than Domingo and his earnings will bemany times higher.”(La

9、zear, p. 188, 2003),11, Krueger (2005) reports revenue for music concertsfrom 1982 to 2003. In 1982, the top 5% (in terms of revenue) of artists earned 62% of concert revenue. For 2003, the corresponding figure was 84%.,12,An example In Rosen (1981), imperfect substitution between quality levels wou

10、ld produce star surgeons. However, if star surgeons have qualitylevels significantly higher than non-star surgeons, then imperfect substitution is not necessary for stars to have significantly higher revenue than non-stars.,13, The term “superstar” will be used when revenue increases & is convex in

11、quality, & a few sellers earning a large % of market revenue. Rosen used profit (), but revenue (R) is used herein. WHY?,14,1st, in my competitive model, low quality producers earn zero profit stars earn all profit. 2nd, in the special case in Rosen closest to the model herein, revenue and profit ar

12、e identically affected by quality, as is true in my competitive model.3rd, earnings reported for top performers in entertainment and sports are not net of cost. The data on concert earnings from Krueger (2005) involve revenue.,15, Rosen (1981) argued his model involved competition.However, different

13、 quality levels were imperfectsubstitutes (with the larger the difference in quality the worse subs. goods were), & the threat of POTENTIALENTRY disciplined existing producers.,16, Adler (2005) argued therewould not be relatively high earnings for superstars unless there are significant quality diff

14、erences between sellers.,17, With several sellers of similar quality, if MC declines with firm output, competition PAC. One “superstar” may survive and sell most of market Q, but it will not have 0.,18, However, if quality levels are not similar between firms,there is no competition inRosens model.,

15、19,Cost and superstar effects, Let C = a firms total cost, q = output, z = quality, & F = fixed cost:,C = zq + F,where 1 & could be positive, negative, or 0.,20, A firms price is P(z) = kz, with k ( 0) a positive constant to be determined later., Rosen (1981) argued superstar effects occur in a mark

16、et when “.fewer are needed to serve it the more capable they are.” This means marginal cost is inversely related to quality, or 0.,21, = kzq - zq - F,Find -max. q & substitute into R to get R*, which yields:,22, Since 1, if , 0., If 1:, 0., Thus, cost could increase in Z (at a decreasing rate) & sti

17、ll have R* positively & convexly related to Z.,23,Market equilibrium Suppose most sellers (non-stars)have the minimum quality level, z0, and a few sellers (stars) have higher quality., Free entry and exit of non-stars occurs., Assume cost is independent of quality, which is not necessary for the exi

18、stence of superstar effects.,24, Each firm has a U-shaped AC curve. Entry or exit of non-stars will force the long-run price of the lowest quality level, z0, to equal the height of the minimum point of average cost, P0.,25,Arbitrage :,P(z) =,where k (introduced earlier) P0/z0.Arbitrage determines re

19、lative Ps, &free entry/exit of non-stars determinesabsolute Ps.,26, Market demand depends on the average quality sold, with inverse market demand:,PD = f(Q, ), with PD = the demand price for the average quality in the market ( )& Q = market output.,27,Adjustment to market equilibrium Suppose z0 = 1

20、& P0 = $10. Minimum quality sells for $10, & higher quality (z) sells for P(z) = $10z. Suppose is initially = 2 & P( ) = $20.,28,q,$,AC,P0 = $10,firm,29, If entry raises to 3,even if the elasticity of demand with respect to = 1(a to b in Figure 1), P( ) will rise to $30 because:1) supply is not vert

21、ical, &2) supply increased to S.,30,S,D,D,Q*,S,Q,P,$20,$30,a,b,c,d,Figure 1,Market,31, For ex., if P( ) = $24 after entry,since /z0 = 3, P(z0) = $8 AC,so 0 for those with z = z0.,32,Thus, the lowest quality sellers exit, market supply decreases, increases, & market demand increases until,at the new

22、level of , P( ) = P0/z0.,33, Only if the elasticity of market demand with respect to z is equal to x (x 1) would price as much as . If this elasticity x, then P( ) would faster than , low quality sellers would have 0, entry would occur at this quality level, market demand would , & P( ) .,34,A Model

23、Let total cost , C, = q2 + F. AC = q + F/q.Min. pt. of AC: q = F1/2, so P0 = 2F1/2.Let inverse mkt. demand be: PD = 1000 Q.In long-run equilibrium, PD = P( ), so solve inverse mkt. demand for Q:,35,Q = A P( )/ = A P0/z0,due to arbitrage. The above Q is the long-run equilibrium point onmkt. demand: w

24、here the market clears, = 0 for non-stars, & arbitrage determines P(z).,36,The total # of firms in long-runequilibrium depends on the distribution of stars. The # of non-stars, N, adjusts to maintain zero for non-stars.,37,Given the assumed cost equation,MC is independent of z, &, since P(z)is linea

25、r in z, a firm with, say, 4 times the quality of a 2nd firm will have a profit-maximizing q that is 4 times that of the 2nd firm.,38,Long run supply comes from addingeach firms MC (depending on the long-run equilibrium # of firms). Setting supply & demand = determines N. With z0 = 1 & P0 = $10, we h

26、ave:N = max(0, 299 Qstar/10),where Qstar = output of all those with z z0.,39,Assume QStar 990, so some sellers with the lowest quality (z0) exist in long-run equilibrium.Suppose all stars are identical, & consider some examples. Note, given MC, q(z0) = 5, z0 = 1, &,given mkt. demand, Q = 990-indepen

27、dent of .,40,41,NOTE: in the examples considered in the table,no one firm sells as much as 5% of the total amount sold (the case when zStar = 9, soqStar = 45).,42,What is required for Superstar effects?With Cost = zq, in the examples above,I used = 0 & = 2. If 0 2, we would not have -max. q linearin z, rather 2q*/ z2 0.,43,Superstar effects still will exist (but will be smaller) if:1) significant quality differences exist between sellers;2) the elasticity of total cost with respect to quality is less than 1; &3) total cost does not increase too rapidlyas output increases.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1