ImageVerifierCode 换一换
格式:PPT , 页数:28 ,大小:637.50KB ,
资源ID:377817      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-377817.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(A Constrained Regression Technique for COCOMO Calibration.ppt)为本站会员(吴艺期)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

A Constrained Regression Technique for COCOMO Calibration.ppt

1、A Constrained Regression Technique for COCOMO Calibration,Presented by Vu Nguyen On behalf of Vu Nguyen, Bert Steece, Barry Boehm nguyenvu, berts, boehmusc.edu,Outline,Introduction Multiple Linear Regression OLS, Stepwise, Lasso, Ridge Constrained Linear Regression Validation and Comparison COCOMO o

2、verview Cross validation Conclusions Limitations Future Work,Introduction,Building software estimation models is a search problem to find the best possible parameters that generate high prediction accuracy satisfy predefined constraints,Multiple Linear Regression,Multiple linear regression is presen

3、ted asyi = 0 + 1xi1 + kxik + i , i = 1,2, n Where, 0, 1, k are the coefficients n is the number of observations k is the number of variables xij is the value of the variable jth for the ith observation yi is the response of the ith observation,Ordinary Least Squares,OLS is the most common method to

4、estimate coefficients 0, 1, k OLS estimates coefficients by minimizing the sum of squared errors (SSE) Minimizeis the estimate of ith observation,Some Limitations of OLS,Highly sensitive to outliers Low bias but high variance (e.g., caused by collinearity or overfitting) Unable to constrain the esti

5、mates of coefficients Estimated coefficients may be counter-intuitive Example, OLS coefficient estimate for RUSE is negative, e.g., increase RUSE rating results in a decrease in effort,Develop for Reuse (RUSE),OLS estimates,Some Other Approaches,Stepwise (forward selection) Start with no variable an

6、d gradually add variables until “optimal” solution is achieved Ridge Minimize SSE and impose a penalty on sum of squared coefficientsLasso Minimize SSE and impose a penalty on sum of absolute coefficients,Outline,Introduction Multiple Linear Regression OLS, Stepwise, Lasso, Ridge Constrained Linear

7、Regression Validation COCOMO overview Cross validation Conclusions Limitations Future Work,Constrained Regression,Principles Use optimization paradigm: optimizing objective function with constraintMinimize f(y, X) subject to cf(z) Impose constraints on coefficients and relative error Expect to reduc

8、e variance by reducing the number of variables (variance and bias tradeoff),Constrained Regression (cont),General formMinimize subject to Constrained Minimum Sum of Squared Errors (CMSE)Constrained Minimum Sum of Absolute Errors (CMAE)Constrained Minimum Sum of Relative Errors (CMRE),Solve the Equat

9、ions,Solving the equations is an optimization problem CMSE: quadratic programming CMRE and CMAE: transformed to the form of linear programming We used lpsolve and quadprog packages in R Determine parameter c using cross-validation,Outline,Introduction Multiple Linear Regression OLS, Stepwise, Lasso,

10、 Ridge Constrained Linear Regression Validation and comparison COCOMO overview Cross validation Conclusions Limitations Future Work,Validation and Comparison,Two COCOMO datasets COCOMO 2000: 161 projects COCOMO 81: 63 projects Comparing with popular model building approaches OLS Stepwise Lasso Ridge

11、 Cross-validation 10-fold cross validation,COCOMO,Cost Constructive Model (COCOMO) first published in 1981 Calibrated using 63 projects (COCOMO 81 dataset) Uses SLOC as a size measure and 15 cost drivers COCOMO II published in 2000 Reflects changes in technologies and practices Uses 22 cost drivers

12、plus size measure Introduces 5 scale factors Calibrated using 161 data points (COCOMO II dataset),COCOMO Overview (cont),COCOMO Effort Equation, non-linearLinearize the model using log-transformation COCOMO 81log(PM) = 0 + 1 log(Size) + 2 log(EM1) + + 16 log(EM15) COCOMO IIlog(PM) = 0 + 1 log(Size)

13、+ i SFi log(Size) + j log(EMj) Estimate coefficients using a linear regression method,Model Accuracy Measures,Magnitude of relative errors (MRE)Mean of MRE (MMRE)Prediction Level: PRED(l) = k/N Where, k is the number of estimates with MRE l,Cross Validation,10-fold cross validation was used Step 1.

14、Randomly split the dataset into K=10 subsets Step 2. For each i = 1 . 10 Remove the subset i th and build the model i th subset is used as testing set to calculate MMREi and PRED(l)I Step 3. Repeat 1 and 2 for r=15 times,Non-cross validation results,COCOMO II dataset (N = 161),COCOMO 81 dataset (N =

15、 63),OLS: Max MRE=1.23 PRED=0.78,* PRED(0.3),Cross-validation Results,COCOMO II dataset,COCOMO 81 dataset,Statistical Significance,Results of statistical significance tests on MMRE (0.05 confidence level used) Mann-Whitney U hypothesis test,CMSE outperforms Ridge, OLS p 0.10 p 0.10,CMSE outperforms

16、Lasso, Stepwise p 0. 05,CMAE outperforms Lasso, Ridge, OLS p 10-3 p 0. 02 Stepwise,CMRE outperforms Lasso, Ridge, OLS p 10-4 p 10-4 Stepwise,Comparing With Published Results,Some best published results in for COCOMO datasets Bayesian analysis (Boehm et al., 2000) Chen et al., 2006 Best cross-validat

17、ed mean PRED(.30):,Productivity Range,COCOMO II.2000 A = 2.94 B = 0.91,CMRE A = 2.27 B = 0.98,Outline,Introduction Multiple Linear Regression OLS, Stepwise, Lasso, Ridge Constrained Linear Regression Validation and comparison COCOMO overview Cross validation Conclusions Limitations Future Work,Concl

18、usions,Technique imposes constraints on the estimates of coefficients and the magnitude of errors term Directly resolving the unexpected estimates of coefficients determined by data Estimation accuracies are favorable CMRE and CMAE outperform OLS, Stepwise, Ridge, Lasso, and CMSE MRE and MAE are fav

19、orable objective functions Technique can be applied in not only COCOMO-like models but also other linear models An alternative for researchers and practitioners to build models,Limitations,As the technique deals with the optimization, sub-optimal solution is returned instead of global-optimal one Mu

20、ltiple solutions exist for the estimates of coefficients There are only two datasets investigated, the technique might not work well on other datasets,Future Work,Validate the technique using other datasets (e.g., NASA datasets) Compare results from the technique with others such as neutral networks

21、, generic programming Apply and compare with other objective functions MdMRE (median of MRE) Z measure (z=estimate/actual),References,Boehm et al., 2000. B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece, A. W. Brown, S. Chulani, and C. Abts, Software Cost Estimation with COCOMO II. Prentice Hall, 2000. Chen et al., 2000, Z. Chen, T. Menzies, D. Port, and B. Boehm. Finding the right data for software cost modeling. IEEE Software, Nov 2005.,Thank You,Q&A,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1