ImageVerifierCode 换一换
格式:PPT , 页数:47 ,大小:1.51MB ,
资源ID:378091      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378091.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Advances in Random Matrix Theory-Let there be tools.ppt)为本站会员(周芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Advances in Random Matrix Theory-Let there be tools.ppt

1、10/9/2018,1,Advances in Random Matrix Theory: Let there be tools,Alan Edelman Brian Sutton, Plamen Koev, Ioana Dumitriu, Raj Rao and others MIT: Dept of Mathematics, Computer Science AI Laboratories World Congress, Bernoulli Society Barcelona, Spain Wednesday July 28, 2004,10/9/2018,2,Message,Ingred

2、ient: Take Any important mathematics Then Randomize! This will have many applications! We cant keep this in the hands of specialists anymore: Need tools!,10/9/2018,3,Tools,So many applications Random matrix theory: catalyst for 21st century special functions, analytical techniques, statistical techn

3、iques In addition to mathematics and papers Need tools for the novice! Need tools for the engineers! Need tools for the specialists!,10/9/2018,4,Themes of this talk,Tools for general beta What is beta? Think of it as a measure of (inverse) volatility in “classical” random matrices. Tools for complic

4、ated derived random matrices Tools for numerical computation and simulation,5,Wigners Semi-Circle,The classical S known as the Gaussian Orthogonal Ensemble Normalized eigenvalue histogram is a semi-circle Precise statements require n etc.,n=20; s=30000; d=.05; %matrix size, samples, sample dist e=;

5、%gather up eigenvalues im=1; %imaginary(1) or real(0) for i=1:s,a=randn(n)+im*sqrt(-1)*randn(n);a=(a+a)/(2*sqrt(2*n*(im+1); v=eig(a); e=e v; end hold off; m x=hist(e,-1.5:d:1.5); bar(x,m*pi/(2*d*n*s); axis(square); axis(-1.5 1.5 -1 2); hold on; t=-1:.01:1; plot(t,sqrt(1-t.2),r);,10/9/2018,6,sym matr

6、ix to tridiagonal form,Same eigenvalue distribution as GOE:O(n) storage ! O(n2) compute,10/9/2018,7,General beta,beta: 1: reals 2: complexes 4: quaternions,Bidiagonal Version corresponds To Wishart matrices of Statistics,10/9/2018,8,Tools,Motivation: A condition number problem Jack & Hypergeometric

7、of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method The tridiagonal numerical 109 trick,10/9/2018,9,Tools,Motivation: A condition number problem Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method The tridiagonal numerical 109 trick,10/9/2018,10,

8、Numerical Analysis: Condition Numbers,(A) = “condition number of A” If A=UV is the svd, then (A) = max/min . Alternatively, (A) = max (AA)/ min (AA) One number that measures digits lost in finite precision and general matrix “badness” Small=good Large=bad The condition of a random matrix?,10/9/2018,

9、11,Von Neumann & co.,Solve Ax=b via x= (AA) -1A bM A-1Matrix Residual: |AM-I|2|AM-I|2 2002 n How should we estimate ?Assume, as a model, that the elements of A are independent standard normals!,10/9/2018,12,Von Neumann & co. estimates (1947-1951),“For a random matrix of order n the expectation value

10、 has been shown to be about n”Goldstine, von Neumann“ we choose two different values of , namely n and 10n”Bargmann, Montgomery, vN“With a probability 1 10n”Goldstine, von Neumann,X ,10/9/2018,13,Random cond numbers, n,Distribution of /n,Experiment with n=200,10/9/2018,14,Finite n,n=10 n=25n=50 n=10

11、0,10/9/2018,15,Condition Number Distributions,P(/n x) 2/x,P(/n2 x) 4/x2,Real n x n, n,Complex n x n, n,Generalizations: : 1=real, 2=complex finite matrices rectangular: m x n,10/9/2018,16,Condition Number Distributions,P(/n x) 2/x,P(/n2 x) 4/x2,Real n x n, n,Complex n x n, n,Square, n: P(/n x) (2-1/

12、()/x (All Betas!) General Formula: P(x) C/x (n-m+1),where = (n-m+1)/2th moment of the largest eigenvalue of Wm-1,n+1 ()and C is a known geometrical constant.Density for the largest eig of W is known in terms of 1F1(/2)(n+1), (/2)(n+m-1); -(x/2)Im-1) from which is availableTracy-Widom law applies pro

13、bably all beta for large m,n. Johnstone shows at least beta=1,2.,10/9/2018,17,Tools,Motivation: A condition number problem Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method The tridiagonal numerical 109 trick,10/9/2018,18,Multivariate Orthogonal Polynomials &

14、Hypergeometrics of Matrix Argument,Ioana Dumitrius talk The important special functions of the 21st century Begin with w(x) on I p(x)p(x) (x) i w(xi)dxi = Jack Polynomials orthogonal for w=1 on the unit circle. Analogs of xm,10/9/2018,19,Multivariate Hypergeometric Functions,10/9/2018,20,Multivariat

15、e Hypergeometric Functions,10/9/2018,21,Wishart (Laguerre) Matrices!,10/9/2018,22,Plamens clever idea,10/9/2018,23,Tools,Motivation: A condition number problem Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method The tridiagonal numerical 109 trick,10/9/2018,24,M

16、ops (Dumitriu etc.) Symbolic,10/9/2018,25,A=randn(n); S=(A+A)/2; trace(S4),det(S3),Symbolic MOPS applications,10/9/2018,26,Symbolic MOPS applications,=3; hist(eig(S),10/9/2018,27,Smallest eigenvalue statistics,A=randn(m,n); hist(min(svd(A).2),10/9/2018,28,Tools,Motivation: A condition number problem

17、 Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method - Raj! The tridiagonal numerical 109 trick,10/9/2018,29,RM Tool Raj!,Courtesy of the Polynomial Method,10/9/2018,30,10/9/2018,31,The Riemann Zeta Function,On the real line with x1, for example,May be analytica

18、lly extended to the complex plane, with singularity only at x=1.,10/9/2018,32,-3 -2 -1 0 1 2 3,The Riemann Hypothesis,All nontrivial roots of (x) satisfy Re(x)=1/2. (Trivial roots at negative even integers.),10/9/2018,33,-3 -2 -1 0 1 2 3,The Riemann Hypothesis,All nontrivial roots of (x) satisfy Re(

19、x)=1/2. (Trivial roots at negative even integers.),|(x)| along Re(x)=1/2,Zeros =.5+i*14.134725142 21.022039639 25.010857580 30.424876126 32.935061588 37.586178159 40.918719012 43.327073281 48.005150881 49.773832478 52.970321478 56.446247697 59.347044003,10/9/2018,34,Computation of Zeros,Odlyzkos fan

20、tastic computation of 10k+1 through 10k+10,000 for k=12,21,22.See http:/ behave like the eigenvalues of A=randn(n)+i*randn(n); S=(A+A)/2;,10/9/2018,35,Nearest Neighbor Spacings & Pairwise Correlation Functions,10/9/2018,36,Painlev Equations,10/9/2018,37,Spacings,Take a large collection of consecutiv

21、e zeros/eigenvalues. Normalize so that average spacing = 1. Spacing Function = Histogram of consecutive differences (the (k+1)st the kth) Pairwise Correlation Function = Histogram of all possible differences (the kth the jth) Conjecture: These functions are the same for random matrices and Riemann z

22、eta,10/9/2018,38,Tools,Motivation: A condition number problem Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method The tridiagonal numerical 109 trick,10/9/2018,39,Everyones Favorite Tridiagonal,10/9/2018,40,Everyones Favorite Tridiagonal,1 (n)1/2,+,+,10/9/2018,4

23、1,Stochastic Operator Limit,10/9/2018,42,Largest Eigenvalue Plots,10/9/2018,43,MATLAB,beta=1; n=1e9; opts.disp=0;opts.issym=1; alpha=10; k=round(alpha*n(1/3); % cutoff parameters d=sqrt(chi2rnd( beta*(n:-1:(n-k-1); H=spdiags( d,1,k,k)+spdiags(randn(k,1),0,k,k); H=(H+H)/sqrt(4*n*beta); eigs(H,1,1,opt

24、s),10/9/2018,44,Tricks to get O(n9) speedup,Sparse matrix storage (Only O(n) storage is used) Tridiagonal Ensemble Formulas (Any beta is available due to the tridiagonal ensemble)The Lanczos Algorithm for Eigenvalue Computation ( This allows the computation of the extreme eigenvalue faster than typi

25、cal general purpose eigensolvers.) The shift-and-invert accelerator to Lanczos and Arnoldi (Since we know the eigenvalues are near 1, we can accelerate the convergence of the largest eigenvalue) The ARPACK software package as made available seamlessly in MATLAB (The Arnoldi package contains state of

26、 the art data structures and numerical choices.) The observation that if k = 10n1/3 , then the largest eigenvalue is determined numerically by the top k k segment of n. (This is an interesting mathematical statement related to the decay of the Airy function.),10/9/2018,45,Level Densities,10/9/2018,46,Open Problems,The distribution for general beta Seems to be governed by a convection-diffusion equation,10/9/2018,47,Random matrix tools!,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1