ImageVerifierCode 换一换
格式:PPT , 页数:83 ,大小:918.50KB ,
资源ID:378110      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378110.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(AES and Attacks on Cryptographic Hashes.ppt)为本站会员(刘芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

AES and Attacks on Cryptographic Hashes.ppt

1、AES and Attacks on Cryptographic HashesJohn MPortions 2004-2005, John Manferdelli. This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for i

2、nstructional use only.JLM 20060212 14:16 1AES History Call for DES successor 1/97 Square begets Rijndael (1998) Rijndael Designers: Vincent Rijmen and Joan Daemen Nine Submissions CAST-256, CRYPTON, DEAL, DFC (cipher), E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, and Twofish

3、 Finalists MARS, RC6, Rijndael, Serpent, and Twofish FIPS 197 published 11/2001JLM 20060212 14:16 2AESPlaintextCiphertextr Roundsk1k2krKey ScheduleKeyJLM 20060212 14:16 3AES Requirements 128, 192, 256 bit keys Algorithms will be judged on the following factors: Actual security of the algorithm comp

4、ared to other submitted algorithms (at the same key and block size). The extent to which the algorithm output is indistinguishable from a random permutation on the input block. Soundness of the mathematical basis for the algorithms security. Other security factors raised by the public during the eva

5、luation process, including any attacks which demonstrate that the actual security of the algorithm is less than the strength claimed by the submitter. Claimed attacks will be evaluated for practicality. Key agility (NSA): “Two blocks encrypted with two different keys should not take much more time t

6、han two blocks encrypted with the same key.JLM 20060212 14:16 4Mars (Multiplication, Addition, Rotation and Substitution)Basic Structure1. Whiten2. 8 rounds of key independent mixing3. 16 rounds of keyed Feistel transforms (2 S-boxes)4. 8 rounds of key independent mixing5. WhitenJLM 20060212 14:16 5

7、RC6 Design Philosophy Leverage our experience with RC5: use data-dependent rotations to achieve a high level of security. Adapt RC5 to meet AES requirements Take advantage of a new primitive for increased security and efficiency: 32x32 multiplication, which executes quickly on modern processors, to

8、compute rotation amounts.Slide by Ron Rivest (Second AES Conference)JLM 20060212 14:16 6Estimate of number of plaintext pairs required to mount a differential attack. (Only 2128 such pairs are available.)Rounds Pairs8 25612 211716 219020 RC6 223824 2299Security against differential attacksInfeasible

9、Slide by Ron Rivest (Second AES Conference)JLM 20060212 14:16 7Rijndael Overview Input p consisting of Nb words k with Nk words (Nk= 4,6,8) State 4 rows, Nb columns Key 4 rows, Nk columns Output c consisting of Nb wordsAll tables filled first col first s0,0, s1,0, s2,0, s3,0, s0,1, JLM 20060212 14:1

10、6 8Rijndael Overview Design Philosophy Wide Trails 32 bit word operations Non-linear substitution uses arithmetic over GF(2) Mixing uses polynomial arithmetic mod (x4+1)JLM 20060212 14:16 9Rijndael Round StructureNr= max(Nk, Nb)+6Nr Nb=4 Nb= 6 Nb=8Nk=4 10 12 14Nk=6 12 12 14Nk=8 14 14 14JLM 20060212

11、14:16 10Rijndael State LayoutState: si,j, i= Nb (mod 4), j= Nb/4, Nb=4j+iFor Nb= 4s0,0 s0,1 s0,2 s0,3s1,0 s1,1 s1,2 s1,3s2,0 s2,1 s2,2 s2,3s3,0 s3,1 s3,2 s3,3JLM 20060212 14:16 11Rijndael Key LayoutKeys: ki,j, i= Nk (mod 4), j= Nk/4For Nk= 4k0,0 k0,1 k0,2 k0,3k1,0 k1,1 k1,2 k1,3k2,0 k2,1 k2,2 k2,3k3

12、0 k3,1 k3,2 k3,3JLM 20060212 14:16 12Rijndael AlgorithmRijndael (p, k, Nb, Nk) ComputeRoundKeys(K, W0Nr)state= pAddRoundKey(0, state)for (i=1, i0)InvMixCol(state)InvShiftRow(state)for each byte, b in stateInvByteSub(b)AddRoundKey(0, state)p= stateJLM 20060212 14:16 14Review: Arithmetic of GF(2n) Su

13、ppose m(x) is an irreducible polynomial of degree n over GF(2): m(x)= xn + mn-1 xn-1 + + m 0. Let a(x) and b(x) be polynomials of degree 6 RC1= 0x01RCi+1= RCi*”0x2” multiply by “x”JLM 20060212 14:16 24AES Finalist BakeoffScore: 1 (low) to 3 (high). From NIST report 2 Oct 2000.MARS RC6 Rijndael(AES)S

14、erpent TwofishGeneral Security 3 2 2 3 3Implementation 1 1 3 3 2SW Perf 2 2 3 1 1Smart Card Perf 1 1 3 3 2HW Perf 1 2 3 3 2Design features 2 1 2 1 3JLM 20060212 14:16 25Algebraic Attacks - Preview XSL, Courtois, Pieprzyk, Murphy, Robshaw1. Generate equations of higher degree than the original equati

15、ons by multiplying equation of an active S-box by passive S-box equations2. Solve the equations in the formal terms of the equations Estimate of linearly independent equations is necessary Claim that solving the equations for AES was possible because the estimated number of linearly independent equa

16、tions was adequate generated excitement. Coppersmith cast doubt on the number of linearly independent equations.JLM 20060212 14:16 26Stream Ciphers Synchronous stream ciphers The keystream is generated independently of the plaintext and the ciphertext Using Keyed PRNG Asynchronous stream ciphers The

17、 keystream is generated as a function of the key, K, and at most t previous ciphertext symbols.JLM 20060212 14:16 27Stream Cipher Encryption and PRNGsPlaintext:PRNG(seed):Ciphertext:Encryption Equation: cj=pj kjJLM 20060212 14:16 28Synchronous Stream using Linear Feedback Shift Register (LFSR)st+L2 st+L1st+1st a1a0 aL-2 aL-1. . . . . . .ai, sj FqRecurrence: sj+L= S j=0, 1 L-1 aj sj+L-1Polynomial: f(x)= S j=0, 1 L-1 aj xj -xLJLM 20060212 14:16 29LFSR-based keystream generator Nonlinear combination generators Nonlinear filter generatorsJLM 20060212 14:16 30

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1