ImageVerifierCode 换一换
格式:PPT , 页数:24 ,大小:943.50KB ,
资源ID:378177      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378177.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Algebraic Techniques To Enhance Common Sub-expression .ppt)为本站会员(sofeeling205)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Algebraic Techniques To Enhance Common Sub-expression .ppt

1、Algebraic Techniques To Enhance Common Sub-expression Extraction for Polynomial System Synthesis,Sivaram Gopalakrishnan Synopsys Inc., Hillsboro, OR 97124Priyank Kalla Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT- 84112,Outline,Problem context: Polynomial

2、 datapath synthesis Our Focus: Integrating CSE and Algebraic methods Applications: DSP for audio, video, multimedia. Motivation Previous Work and Limitations Integrated Approach Square-free factorization Common Coefficient Extraction Common Cube Extraction Algebraic Division Results: Area Optimizati

3、on Conclusions & Future Work,The Synthesis Flow,Polynomial representation?,Quadratic filter design for polynomial signal processingy = a0 . x12 + a1 . x1 + b0 . x02 + b1 . x0 + c . x0 . x1,Motivation,P1 = x2 + 6xy + 9y2 P2 = 4xy2 + 12y3 P3 = 2zx2 + 6xyz P1 = x(x+ 6y) + 9y2 P2 = 4xy2 + 12y3 P3 = x(2z

4、x + 6yz)P1 = x(x+ 6y) + 9y2 P2 = y2(4x+ 12y) P3 = xz(2x + 6y),Direct Implementation 17 Mults & 4 Adds,Horner form 15 Mults & 4 Adds,Factorization + CSE 12 Mults & 4 Adds,Motivation,d1 = x + 3y P1 = d12 P2 = 4d1y2 P3 = 2xzd1 d1 is a good building blockHow to identify such building blocks across multi

5、ple polynomial datapaths?Need an methodology to expose many common expressions!,Our Approach 8 Mults & 1 Add,Conventional Methods,Extracting control-dataflow graphs (CDFGs) from RTL Scheduling Resource sharing Retiming Control synthesis Algebraic Transforms for arithmetic designs Factorization Hosan

6、gadi et al, ICCAD 04 Common Sub-expression Elimination Hosangadi et al, VLSI 05 Term-rewriting Arvind et al, IEEE. Micro 98 Tree-Height Reduction De Micheli 94 Lack of symbolic computer algebra manipulation,Conventional Methods,Kernel/Co-kernel Extraction (Factorization + CSE) Integrates CSE with cu

7、be/coefficient extraction Uses coefficients and variables to identify cubes (co-kernels)to obtain kernels Subsequently uses CSE for further optimizationP = 5x2 + 10y3 + 15pq; Uses 5, 10, 15, x, y, p, q for kernel/co-kernel extraction Does not perform algebraic division Cannot determine decomposition

8、 5(x2 + 2y3 + 3pq)P = x2 + 2xy + y2; - (x+y)2 Cannot determine the above decomposition,Symbolic algebra techniques,Polynomial models for complex computational blocksGuiding Synthesis engines using Grbners basis Peymandoust and De Micheli, TCAD 02 Given polynomial F and Library elements F = h1 I1 + +

9、 hn In Restricted to library elementsDatapath optimization using word-length informationGopalakrishnan et al, ICCAD 07 Restricted to fixed-size datapaths Cannot address systems of polynomials,Optimization techniques,Canonical Form representation ckYk ck : Coefficient in the range (0 ck bk) Yk : Fall

10、ing factorial F = 3x2y2 - 3x2y - 3xy2 + 3xy = 3x(x-1)y(y-1)f1 = 5x3y2 - 5x3y - 15x2y2 + 15x2y + 10xy2 - 10xy + 3z2 f2 = 3x2y2 - 3x2y - 3xy2 + 3xy + z + 1d1 = x(x-1)y(y-1) f1 = 5d1(x-2) + 3z2 f2 = 3d1 + z + 1,Optimization techniques,Square-free factorizationLet F be an integral domain Z A polynomial

11、u in Fx is square-free if there is no polynomial v in Fx with deg(v, x) 0, such that v2 | u.u1 = x2 + 3x + 2; u1 = (x+1)(x+2) is square-free u2 = x4 + 7x3 + 18x2 + 20x + 8;u2 = (x+1)(x+2)2 is not square-free!,Optimization techniques,Common Coefficient Extraction P = 8x + 16y + 24z; P1 = 2(4x + 8y +

12、12z); P2 = 4(2x + 4y + 6z); P3 = 8(x + 2y + 3z); best transformationUse GCD computation Get the coefficients (ais) Compute GCD of every pair (ai, aj) Retain GCDs atleast (ai, aj) Arrange GCDs in decreasing order, perform extraction Update GCD list and continue,Optimization techniques,Common Coeffici

13、ent Extraction (Example) P = 8x + 16y + 24z + 15a + 30b; Coefficients 8, 16, 24, 15, 30 GCD list 8, 8, 1, 2, 8, 1, 2, 1, 6, 15 Reduced GCD list 8, 15 - decreasing order 15, 8Extracting 15 results in P = 8x + 16y + 24z + 15(a + 2b);Similarly, extracting 8 results in P = 8(x + 2y + 3z) + 15(a + 2b);,O

14、ptimization techniques,Common Cube Extraction Similar to kernel/co-kernel extraction (for variables) P1 = x2y + xyz; P2 = ab2c3 + b2c2x; P3 = axz + x2z2b; kernel/co-kernel extraction results in P1 = xy(x + z); P2 = b2c2(ac + x); P3 = xz(a + xzb);,Optimization techniques,Polynomial long divisionGiven

15、 two polynomials a(x) and b(x), algebraic division determines q(x) and r(x) such thata(x) = b(x) q(x) + r(x)a(x) = x4 - 2x3 + 5; b(x) = x2 + 3x - 2;a(x) = b(x) (x2 5x + 17) 61x + 39 q(x) r(x),Optimization techniques,Common Sub-Expression EliminationIdentify isomorphic patterns in an arithmetic expre

16、ssion tree and merge them!k = x + y; m = x + y + z; n = xy + x + y;k = x + y; m = k + z; n = xy + k;,Integrated approach,Input: The polynomial system Porig (list of arrays) Perform Canonization, Square-free factorization Get best initial cost: Cinitial Perform Coefficient extraction: Pcce Perform cu

17、be extraction: Pcce_cube, get linear blocks Get the lists representing the system For every linear block, for each list perform algebraic division Pick the best cost,Illustration,Integrated approach (Example),P1 = 13x2 + 26xy + 13y2 + 7x - 7y + 11; P2 = 15x2 - 30xy + 15y2 + 11x + 11y + 9; PorigSquar

18、e-free factorization does not work! Initial cost: 16 M and 10 AAfter common coefficient extraction (Pcce) P1 = 13(x2 + 2xy + y2) + 7(x y) + 11; P2 = 15(x2 - 2xy + y2) + 11(x + y) + 9; Linear blocks: (x y), (x + y),Integrated approach (Example),After common cube extraction (Pcce_cube) P1 = 13(x(x + 2

19、y) + y2) + 7(x y) + 11; P2 = 15(x(x- 2y) + y2) + 11(x + y) + 9; Linear blocks: (x y), (x + y), (x + 2y), (x 2y)Perform algebraic division using the linear blocksPcce is the best cost implementation with (x+y) (x-y)d1 = x + y; d2 = x - y; P1 = 13d12 + 7d2 + 11; P2 = 15d22 + 11d1 + 9; Cost: 6 M and 6

20、A,Results,Average area improvement: 42%,Results,Average area improvement: 42%,Conclusions & Future Work,Polynomial decomposition approach for arithmetic datapaths Arithmetic datapaths modeled as polynomial systems Integrating CSE with algebraic manipulation Performing algebraic decomposition to enhance the power of CSEImpressive area savings But delay penalty!Future Work: Address the concerns in delay!Retarget the approach towards power savings?,Questions?,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1