ImageVerifierCode 换一换
格式:PPT , 页数:16 ,大小:123KB ,
资源ID:378185      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378185.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Algorithms for Self-Organization and Adaptive Service .ppt)为本站会员(outsidejudge265)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Algorithms for Self-Organization and Adaptive Service .ppt

1、Algorithms for Self-Organization and Adaptive Service Placement in Dynamic Distributed Systems,Artur Andrzejak, Sven Graupner,Vadim Kotov, Holger Trinks Internet Systems and Storage Laboratory HP Laboratories Palo Alto HPL-2002-259 September 17th , 2002,15/11/2004,2,Intruduction,Grid Computing Dynam

2、ic Grid Computing Open Grid Service Architecture (OGSA)Suitable placement of services or applicationsSelf-organization and Fault-tolerance,15/11/2004,3,Management of Dynamic Distributed Systems(1/4),Problem Domain Balancing Demand and Supply Centralized versus Distributed management Dynamic Distribu

3、ted Systems Self-organization, Fault-tolerance and Adaptation Paradigms for Mobile Computing and ubiquitous computing Basic Assumptions,15/11/2004,4,Management of Dynamic Distributed Systems(2/4),Responsiveness and Solution Quality,15/11/2004,5,Management of Dynamic Distributed Systems(3/4),Control

4、Objectives and the Partial Objective Function (POF) (1/2) General control objectives Balancing the server load such that the utilization of each server is in a desired range. Placing services in such a way that communication demand among them does not exceed the capacity of the links between the hos

5、ting server environments. Minimizing the overall network traffic aiming to place services with high traffic close to each other on nearby servers (nearby in the sense of a low number of communication hops across nodes).,15/11/2004,6,Management of Dynamic Distributed Systems(4/4),Control Objectives a

6、nd the Partial Objective Function (POF) (1/2),15/11/2004,7,Ant-Based Control Algorithm(1/4),Classical Ant Colony Optimization1. The ant must “remember” the whole path it has taken; this information might become very large. 2. The ant must visit all objects on its tour. In a large and dynamic system,

7、 this is a serious drawback.3. Finally, each solution (path) must be evaluated against others. This requires central knowledge.Ants , Service Managers and Server Managers Three Entities A service manager Ms of a service S An ant representing s a server manager which executes the ant code, and mainta

8、ins and updates the pheromone table of its server.,15/11/2004,8,Ant-Based Control Algorithm(2/4),Functionality of the System Components Service Managers Watch the performance of its service Evaluate current assignment POF Spawns Ants Ants Created by a service manager Travel from one server manager t

9、o the next Server Managers Environment where ants are executed Lets Ants update pheromone table Maintains pheromone table Sends periodically the pheromone table to its neighbors,15/11/2004,9,Ant-Based Control Algorithm(3/4),Placement Scores and the pheromone table Choosing Next Server Initial placem

10、ent of the Ants,15/11/2004,10,Ant-Based Control Algorithm(4/4),Conclusions for Self-Organization and Fault Tolerance Servers and resources added to the network do not need to inform any central instance of their existenceIf the majority of the servers in the system are unavailable or unreachable wil

11、l not be prevented to work correctly in the remaining part of the system The service manager is a single point of failure; if it disappear the service or a group of them might not recover without human intervention,15/11/2004,11,BLE-Based Control Algorithms (1/2),Decision Cycle in a cluster 1. Each

12、server broadcasts the list of services it hosts with all new arrived services and simultaneously updates its list of all services in the cluster2. Each server evaluates its own suitability to host each service and sorts the list according to the computed score. The evaluation is done by using the PO

13、F, In addition, a service already deployed on a server highly increases the score. 3. Each server broadcasts a list, ordered by scores, of those services the server can host simultaneously without exceeding its capacity. 4. When a server receives a score list from a peer, it compares this score with

14、 its own score for a service. As a consequence, each server knows whether it is the most eligible one for hosting a particular service. 5. The changes in the service placement are executed. Notice that each server knows already whether it has to install new or remove current services. In addition, t

15、he cluster head compares the initial list of services with those, which will be hosted at the end of this decision cycle. The remaining services are passed on to the next hierarchy level as explained below.,15/11/2004,12,BLE-Based Control Algorithms (2/2),Gossiping Algorithms Scalability by a cluste

16、r hierarchy Conclusion: Self-Organization and Fault-Tolerance Advantages Simple Automatic Recovery of Services The cluster size parameterizes the algorithms responsiveness Disadvantages The cluster head can become overloaded or even a single point of failure The hierarchy of the clusters must be cre

17、ated externally,15/11/2004,13,Agents in Overlay Networks(1/2),Service Groups and Agents Service Group Clusters of Independent entities which do not rely on services outside the cluster Group Agents Each group agent has the task to walk around in the resource network and evaluate the current server a

18、nd its neighborhood in regard to placement of the services in the service group; however, one agent stays on one of the servers which host members of the service group, and evaluates only the current placement. A further assignment of a group agent is to provide the fault-tolerance to the optimizati

19、on infrastructure P2P-Based Overlay Networks Servers are connected in a P2P-manner to achieve fault-tolerance and self-organizing properties We are mostly interested in server processing capacity, server storage capacity and the density values of these attributes.,15/11/2004,14,Agents in Overlay Net

20、works(2/2),Lessons Learned for Self-Organization and Fault-Tolerance Advantages Opposed to the ACO-approach, the above algorithms provides full fault-tolerance Another positive aspect is exploiting the self-organization properties of the underlying P2P-network Disadvantages Each agent is a complex e

21、ntity, which might bind more resources than e.g. in case of the Ant Colony Optimization-based algorithm,15/11/2004,15,Two Simple Algorithms,Random / Round Robin (R3) Load Distribution Algorithm Pushes load from an overloaded server to a randomly or in a round robin fashion chosen neighbor that may a

22、bsorb that load if it has the capacity, or pushes the load further on to another server chosen in the same fashion. Advantages Its simplicity and statelessness Disadvantages Unpredictability and insufficient (random) convergence on the chance for thrashing Simple Greedy Algorithm A simple greedy alg

23、orithm just pushes load on to the least loaded neighbor Greedy algorithms make use of locally available information The algorithms R3 and Greedy make good use of locality by placing load on the closest server they can find. Over a longer period, both algorithms achieve good load balancing. However, fast responsiveness is not guaranteed.,15/11/2004,16,Conclusions,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1