ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:1.42MB ,
资源ID:378293      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378293.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(An Introduction to Description Logics.ppt)为本站会员(syndromehi216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

An Introduction to Description Logics.ppt

1、An Introduction to Description Logics,What Are Description Logics?,A family of logic based Knowledge Representation formalisms Descendants of semantic networks and KL-ONE Describe domain in terms of concepts (classes), roles (relationships) and individuals Distinguished by: Formal semantics (typical

2、ly model theoretic) Decidable fragments of FOL Closely related to Propositional Modal & Dynamic Logics Provision of inference services Sound and complete decision procedures for key problems Implemented systems (highly optimised),DL Architecture,Knowledge Base,Tbox (schema),Abox (data),Man Human u M

3、ale Happy-Father Man u 9 has-child Female u ,John : Happy-Father hJohn, Maryi : has-child,Inference System,Interface,Short History of Description Logics,Phase 1: Incomplete systems (Back, Classic, Loom, . . . ) Based on structural algorithms Phase 2: Development of tableau algorithms and complexity

4、results Tableau-based systems for Pspace logics (e.g., Kris, Crack) Investigation of optimisation techniques Phase 3: Tableau algorithms for very expressive DLs Highly optimised tableau systems for ExpTime logics (e.g., FaCT, DLP, Racer) Relationship to modal logic and decidable fragments of FOL,Lat

5、est Developments,Phase 4: Mature implementations Mainstream applications and Tools Databases Consistency of conceptual schemata (EER, UML etc.) Schema integration Query subsumption (w.r.t. a conceptual schema) Ontologies and Semantic Web (and Grid) Ontology engineering (design, maintenance, integrat

6、ion) Reasoning with ontology-based markup (meta-data) Service description and discovery Commercial implementations Cerebra system from Network Inference Ltd,Description Logic Family,DLs are a family of logic based KR formalisms Particular languages mainly characterised by: Set of constructors for bu

7、ilding complex concepts and roles from simpler ones Set of axioms for asserting facts about concepts, roles and individualsALC is the smallest DL that is propositionally closed Constructors include booleans (and, or, not), and Restrictions on role successors E.g., concept describing “happy fathers”

8、could be written:Man hasChild.Female hasChild.Male hasChild.(Rich Happy),DL Concept and Role Constructors,Range of other constructors found in DLs, including: Number restrictions (cardinality constraints) on roles, e.g., 3 hasChild, 1 hasMother Qualified number restrictions, e.g., 2 hasChild.Female,

9、 1 hasParent.Male Nominals (singleton concepts), e.g., Italy Concrete domains (datatypes), e.g., hasAge.(21), earns spends.Inverse roles, e.g., hasChild- (hasParent) Transitive roles, e.g., hasChild* (descendant) Role composition, e.g., hasParent o hasBrother (uncle),DL Knowledge Base,DL Knowledge B

10、ase (KB) normally separated into 2 parts: TBox is a set of axioms describing structure of domain (i.e., a conceptual schema), e.g.: HappyFather Man hasChild.Female Elephant Animal Large Grey transitive(ancestor)ABox is a set of axioms describing a concrete situation (data), e.g.: John:HappyFather :h

11、asChildSeparation has no logical significance But may be conceptually and implementationally convenient,OWL as DL: Class Constructors,XMLS datatypes as well as classes in 8P.C and 9P.C E.g., 9hasAge.nonNegativeInteger Arbitrarily complex nesting of constructors E.g., Person u 8hasChild.(Doctor t 9ha

12、sChild.Doctor),RDFS Syntax,E.g., Person u 8hasChild.(Doctor t 9hasChild.Doctor):,OWL as DL: Axioms,Axioms (mostly) reducible to inclusion (v) C D iff both C v D and D v C Obvious FOL equivalences E.g., C D x.C(x) D(x), C v D x.C(x) D(x),XML Schema Datatypes in OWL,OWL supports XML Schema primitive d

13、atatypes E.g., integer, real, string, Strict separation between “object” classes and datatypes Disjoint interpretation domain DD for datatypes For a datavalue d, dI DD And DD DI = ; Disjoint “object” and datatype properties For a datatype propterty P, PI DI DD For object property S and datatype prop

14、erty P, SI PI = ; Equivalent to the “(Dn)” in SHOIN(Dn),Why Separate Classes and Datatypes?,Philosophical reasons: Datatypes structured by built-in predicates Not appropriate to form new datatypes using ontology language Practical reasons: Ontology language remains simple and compact Semantic integr

15、ity of ontology language not compromised Implementability not compromised can use hybrid reasoner Only need sound and complete decision procedure for: dI1 dIn, where d is a (possibly negated) datatype,OWL DL Semantics,Mapping OWL to equivalent DL (SHOIN(Dn): Facilitates provision of reasoning servic

16、es (using DL systems) Provides well defined semantics DL semantics defined by interpretations: I = (DI, I), whereDI is the domain (a non-empty set) I is an interpretation function that maps: Concept (class) name A ! subset AI of DI Role (property) name R ! binary relation RI over DI Individual name

17、i ! iI element of DI,DL Semantics,Interpretation function I extends to concept expressions in the obvious way, i.e.:,Interpretation Example, = v, w, x, y, z AI = v, w, x BI = x, y RI = (v, w), (v, x), (y, x), (x, z): B = A u B =: A t B =9 R B =8 R B =9 R (9 R A) = 9 R : (A t B) =6 1 R A = 1 R A =,AI

18、,v,x,y,z,w,BI,DL Knowledge Bases (Ontologies),An OWL ontology maps to a DL Knowledge Base K = hT , Ai T (Tbox) is a set of axioms of the form: C v D (concept inclusion) C D (concept equivalence) R v S (role inclusion) R S (role equivalence) R+ v R (role transitivity) A (Abox) is a set of axioms of t

19、he form x 2 D (concept instantiation) hx,yi 2 R (role instantiation) Two sorts of Tbox axioms often distinguished “Definitions” C v D or C D where C is a concept name General Concept Inclusion axioms (GCIs) C v D where C in an arbitrary concept,Knowledge Base Semantics,An interpretation I satisfies

20、(models) an axiom A (I A): I C v D iff CI DI I C D iff CI = DI I R v S iff RI SI I R S iff RI = SI I R+ v R iff (RI)+ RI I x 2 D iff xI 2 DI I hx,yi 2 R iff (xI,yI) 2 RI I satisfies a Tbox T (I T ) iff I satisfies every axiom A in T I satisfies an Abox A (I A) iff I satisfies every axiom A in A I sa

21、tisfies an KB K (I K) iff I satisfies both T and A,Multiple Models -v- Single Model,DL KB doesnt define a single model, it is a set of constraints that define a set of possible models No constraints (empty KB) means any model is possible More constraints means fewer models Too many constraints may m

22、ean no possible model (inconsistent KB) In contrast, DBs (and frame/rule KR systems) make assumptions such that DB/KB defines a single model Unique name assumption Different names always interpreted as different individuals Closed world assumption Domain consists only of individuals named in the DB/

23、KB Minimal models Extensions are as small as possible,Example of Multiple Models,KB = KB = a:C, b:D, c:C, d:EKB = a:C, b:D, c:C, d:E, b:CKB = a:C, b:D, c:C, d:E, b:CD v CKB = a:C, b:D, c:C, d:E, b:CD v C, E v CKB = a:C, b:D, c:C, d:E, b:CD v C, E v C, d: C,I1: = v, w, x, y, z CI = v, w, y DI = x, y

24、EI = z aI = v bI = x cI = w dI = yI3: = v, w, x, y, z CI = v, w, y DI = x, y EI = z aI = v bI = y cI = w dI = z,I2: = v, w, x, y, z CI = v, w, y DI = x, y EI = z aI = v bI = x cI = w dI = zI4: = v, w, x, y, z CI = v, w, x, y DI = x, y EI = z aI = v bI = x cI = y dI = y,Example of Single Model,KB = K

25、B = a:C, b:D, c:C, d:EKB = a:C, b:D, c:C, d:E, b:CKB = a:C, b:D, c:C, d:E, b:CE v C,I: = I: = a, b, c, d CI = a, b, c DI = b EI = d aI = a bI = b cI = c dI = d,I: = a, b, c, d CI = a, c DI = b EI = d aI = a bI = b cI = c dI = dI: = a, b, c, d CI = a, b, c, d DI = b EI = d aI = a bI = b cI = c dI = d

26、,Inference Tasks,Knowledge is correct (captures intuitions) C subsumes D w.r.t. K iff for every model I of K, CI DI Knowledge is minimally redundant (no unintended synonyms) C is equivallent to D w.r.t. K iff for every model I of K, CI = DI Knowledge is meaningful (classes can have instances) C is s

27、atisfiable w.r.t. K iff there exists some model I of K s.t. CI ;Querying knowledge x is an instance of C w.r.t. K iff for every model I of K, xI 2 CIhx,yi is an instance of R w.r.t. K iff for, every model I of K, (xI,yI) 2 RIKnowledge base consistency A KB K is consistent iff there exists some model

28、 I of K,Single Model -v- Multiple Model,Multiple models: Expressively powerful Boolean connectives, including : and t Can capture incomplete information E.g., using t and 9 Monotonic Adding information preserves truth Reasoning (e.g., querying) is hard/slow Queries may give counter-intuitive results in some cases,Single model: Expressively weaker (in most respects) No negation or disjunction Cant capture incomplete information Nonmonotonic Adding information does not preserve truth Reasoning (e.g., querying) is easy/fast Queries may give counter-intuitive results in some cases,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1