ImageVerifierCode 换一换
格式:PPT , 页数:88 ,大小:1.70MB ,
资源ID:378309      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378309.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(An Introduction to the Kalman Filter.ppt)为本站会员(inwarn120)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

An Introduction to the Kalman Filter.ppt

1、Sajad Saeedi G. University of new Brunswick SUMMER 2010,An Introduction to the Kalman Filter,CONTENTS,1. Introduction 2. Probability and Random Variables 3. The Kalman Filter 4. Extended Kalman Filter (EKF),Introduction,Controllers are Filters Signals in theory and practice 1960, R.E. Kalman for Apo

2、llo project Optimal and recursive Motivation: human walking Application: aerospace, robotics, defense scinece, telecommunication, power pants, economy, weather, ,CONTENTS,1. Introduction 2. Probability and Random Variables 3. The Kalman Filter 4. Extended Kalman Filter (EKF),Probability and Random V

3、ariables,Probability Sample space p(AB)= p(A)+ p(B) p(AB)= p(A)p(B) Joint probability(independent) p(A|B) = p(AB)/p(B) Bays theorem Random Variables (RV) RV is a function, (X) mapping all points in the sample space to real numbers,Probability and Random Variables,Cont.,Probability and Random Variabl

4、es,Cont.Example: tossing a fair coin 3 times (P(h) = P(t) Sample space = HHH, HHT, HTH, THH, HTT, TTH, THT, TTT X is a RV that gives number of tails P(X=2) = ? HHH, HHT, HTH, THH, HTT, TTH, THT, TTT P(X2) = ? HHH, HHT, HTH, THH, HTT, TTH, THT, TTT,Probability and Random Variables,Cumulative Distribu

5、tion Function (CDF), Distribution FunctionProperties,Probability and Random Variables,Cont.,Probability and Random Variables,Determination of probability from CDFDiscrete, FX (x) changes only in jumps, (coin example) , R=ponit Continuous, (rain example) , R=interval Discrete: PMF (Probability Mass F

6、unction) Continuous: PDF (Probability Density Function),Probability and Random Variables,Probability Mass Function (PMF),Probability and Random Variables,Probability and Random Variables,Mean and VarianceProbability weight averaging,Probability and Random Variables,Variance,Probability and Random Va

7、riables,Normal Distribution (Gaussian)Standard normal distribution,Probability and Random Variables,Example of a Gaussian normal noise,Probability and Random Variables,Galton boardBacteria lifetime,Probability and Random Variables,Random Vector Covariance Matrix Let x = X1, X2, ., Xp be a random vec

8、tor with mean vector = 1, 2, ., p. Variance: The dispersion of each Xi around its mean is measured by its variance (which is its own covariance). Covariance: Cov(Xi, Xj ) of the pair Xi, Xj is a measure of the linear coupling between these two variables.,Probability and Random Variables,Cont.,Probab

9、ility and Random Variables,example,Probability and Random Variables,Cont.,Probability and Random Variables,Random Process A random process is a mathematical model of an empirical process whose model is governed by probability laws State space model, queue model, Fixed t, Random variable Fixed sample

10、, Sample function (realization) Process and chain,Probability and Random Variables,Markov processState space model is a Markov process Autocorrelation: a measure of dependence among RVs of X(t)If the process is stationary (the density is invariant with time), R will depend on time difference,Probabi

11、lity and Random Variables,Cont.,Probability and Random Variables,White noise: having power at all frequencies in the spectrum, and being completely uncorrelated with itself at any time except the present (dirac delta autocorolation)At any sample of the signal at one time it is completely independent

12、(uncorrelated) from a sample at any other time.,Stochastic Estimation,Why white noise? No time correlation easy computaion Does it exist?,Stochastic Estimation,Observer design Blackbox problemObservability Luenburger observer,Stochastic Estimation,Belief,Initial state detects nothing:,Moves and dete

13、cts landmark:,Moves and detects nothing:,Moves and detects landmark:,Stochastic Estimation,Parametric Filters Kalman Filter Extended Kalman Filter Unscented Kalman Filter Information FilterNon Parametric Filters Histogram Filter Particle Filter,CONTENTS,1. Introduction 2. Probability and Random Vari

14、ables 3. The Kalman Filter 4. Extended Kalman Filter (EKF),The Kalman Filter,Example1: driving an old car (50s),The Kalman Filter,Example2: Lost at sea during night with your friend Time = t1,The Kalman Filter,Time = t2,The Kalman Filter,Time = t2,The Kalman Filter,Time = t2,The Kalman Filter,Time =

15、 t2 is overProcess model w is Gaussian with zero mean and,The Kalman Filter,.,The Kalman Filter,More detail,The Kalman Filter,More detail,The Kalman Filter,brief.,The Kalman Filter,MATLAB example, voltage estimation Effect of covariance,Tunning,Q and R parameters Online estimation of R using AI (GA,

16、 NN, ) Offline system identification Constant and time varying R and Q Smoothing,CONTENTS,1. Introduction 2. Probability and Random Variables 3. The Kalman Filter 4. Extended Kalman Filter (EKF) 5. Particle Filter 6. SLAM,EKF,Linear transformationNonlinear transformation,EKF,example,EKF,EKFSuboptima

17、l, Inefficiency because of linearization Fundamental flaw changing normal distribution ad hoc,EKF,EKF,EKF,EKF,EKF,EKF,EKF,Cont.,EKF,EKF,Model:Step1: predictStep2: correct,EKF,EKF,Example:,EKF,Assignment: Consider following state space model: x1(k) = sin(k-1)*x2(k-1) +v x2(k) = x2(k-1) y = x1(k) + w

18、v is noisy input signal, vN(0, 0.5), w is observation noise, wN(0, 0.1) Simulate the system with given parameters and filter the states. - MATLAB figures of states and covariance matrix,EKF_this assignments is optional,Assignment(optional): Ackerman steering car process model (nonlinear):States are

19、(x, y, orientation) observation model (linear):H = 1 0 0;0 1 0; 0 0 1; In x-y plane, start from (0,0), go to (4,0), then (4,4), then (0,0),EKF_this assignments is optional,3 MATLAB figures, each including filtered and un-filterd x, y and orientation Simulation time, for T = 0.025 V= 3; % m/s, forwar

20、d velocity is fixed wheel base= 4; sigmaV= 0.3; % m/s sigmaG= (3.0*pi/180); % radians Q= sigmaV2 0; 0 sigmaG2; sigmaX= 0.1; % m, x sigmaY= 0.1; % m, y sigmaO= 0.005; % radian,orientation,CONTENTS,1. Introduction 2. Probability and Random Variables 3. The Kalman Filter 4. Extended Kalman Filter (EKF)

21、 5. Particle Filter 6. SLAM,Bayesian Estimation,Recursive Bayesian EstimationKnown pdf for q and r GivenFind,Bayesian Estimation,1) Chapman-Kolmogorov eq. (using process model)2) update (using observation model),Bayesian Estimation,Histogram Filter,Histogram Filter,Particle Filter,Suboptimal filters

22、 Sequential Monte Carlo (SMC) Based on the point mass (particle) representation of probability density Basic idea proposed in 1950s, 1) but that time there were no fast machine 2) and degeneracy problem Solution: resampling,Particle Filter,Particle Filter,Monte Carlo IntegrationRiemann sumApproximat

23、ion for Integral and expected value,Particle Filter,Importance Sampling (IS)Importance or proposal density q(x),Particle Filter,Sequential Importance Sampling (SIS) recursive The base for all particle (MC) filters: Bootstrap, condensation, particle, interacting particles, survival of fittest Key ide

24、a: Represent required posterior density with a set of samples with associated weights Compute estimation based on samples,CONTENTS,1. Introduction 2. Probability and Random Variables 3. The Kalman Filter 4. Extended Kalman Filter (EKF) 5. Particle Filter 6. SLAM,SLAM,Simultaneous localization and ma

25、pping Build/update map + keep the track of the robot Complexity under noise and error Different domain Indoor, outdoor, underwater, Solution Baysian rule, but there are problems Loop closing (consistent mapping) Convergence Computation power,SLAM,SLAM: Feature based View based Data Association Solut

26、ions (Feature based): EKF-SLAM Graph-SLAM FAST-SLAM, (Particle Filter SLAM),Data Association,Data Association Mahalanobis distance (1936),Data Association,Data Association (X2 distribution),Data Association,Data Association (X2 distribution),Feature based SLAM,SLAM,Probabilistic formulation,SLAM,Fin

27、dGiven Process modelObservation model,SLAM,Solution,EKF-SLAM,EKF-SLAM,EKF-SLAM,EKF-SLAM,Issues with EKF-SLAM Convergence Map convergence Computational Effort computation grows quadratically with the number of landmarks Data Association The association problem is compounded in environments where land

28、marks are not simple points and indeed look different from different viewpoints. Nonlinearity Convergence and consistency can only be guaranteed in the linear case,Graph-SLAM,Graph-SLAM,FAST-SLAM: Correlation,SLAM: robot path and map are both unknown!,Robot path error correlates errors in the map,FA

29、ST-SLAM,Rao-Blackwellized Filter (particle), FASTSLAM (2002) Based on recursive Mont Carlo sampling EKF-SLAM: Linear, Gaussian FAST-SLAM: Nonlinear, Non-Gaussian pose distribution Just linearzing observation model Monte Carlo Sampling,FAST-SLAM,FAST-SLAM,Key property: The pdf is on trajectory not on single pose Rao-Blackwellized state, the trajectory is represented by weighted samples Problem: Degenerecy,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1