ImageVerifierCode 换一换
格式:PPT , 页数:26 ,大小:515.50KB ,
资源ID:378372      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378372.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Analyzing Metabolomic Datasets.ppt)为本站会员(赵齐羽)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Analyzing Metabolomic Datasets.ppt

1、Analyzing Metabolomic Datasets,Jack Liu Statistical Science, RTP, GSK 7-14-2005,Overview,Features of Metabolomic datasets Pre-learning procedures Experimental design Data preprocess and sample validation Metabolite selection Unsupervised learning Profile clustering SVD/RSVD Supervised learning Softw

2、are,Why metabolomics?,Discover new disease biomarkers for screening and therapy progression A small subsets of metabolites can indicate an early disease stage or predict a therapy efficiency Associate metobolites (functions) with transcripts (genes) Metobolites are downstream results of gene express

3、ion,Metabolomics datasets,Advantages Metabolomics are not organism specific = make cross-platform analysis possible Changes are usually large Closer to phenotype Metabolites are well known (900-1000) Disadvantages Lots of missing data and mismatches (like Proteomics) Expensive (about 2-10 more expen

4、sive than Affymetrix),Experimental design,Traditional experimental design still apply Blocking Randomization Enough replicates Design the experiment based on the expectation A two-group design will not lead to a complete profiling (if samples in groups are homogenous) A multiple-group design may hav

5、e difficulty for supervised learning (if group number is large and data is noisy),Data preprocessing,Perform transformation Log-2 transformation is a common choice Normalization: use simple ones Summarization is needed for technical replicates Filter variables by missing patterns What to do with the

6、 missing data?,“Curse of missing data”,Missing can be due to multiple causes Informative missing Inconsistency / mismatch Unknown missing (we recently identified a suppression effect in Proteomics) What to do? Replace with the detection limit (nave) Leave as it is and let the algorithm to deal with

7、it (we may ignore important missing patterns) Single imputation (KNN, SVD. Not easy for a data with 20% missing) Multiple imputation (How to impute? Not easy to apply) Whats needed? Theory support for univariate modeling incorporating missing values/censored values,NCI dataset,58 cells and 300 metab

8、olites, no replicates These cells are the majorities of the famous NCI-60 cancer cell lines 27% missing data. Can not replace missing values with a low value. Why?,Missing value replacement: does it always work?,Before replacement Correlation = 0.88,After replacement Correlation = 0.68,Cell 1 and 2

9、are both breast cancer cell types,Note: use pair-wise deletion to compute correlation; replace with value 13.,Sample validation,Objective After we do the experiment, how do we decide if a sample has passed QC and is not an outlier? Solutions Technical QC measures PCA: visual approach. Accepting or n

10、ot is arbitrary Correlation-based method: formal and quantitative approach; based on all the data; has been taken by GSK as the formal procedure Sample validation is a cost-saving procedure,Metabolite selection,Objective Filter metabolites and assign significance Outcome Least square means Fold chan

11、ge estimates and p-values High dimensional linear modeling All the variables share the same X matrix and the same decomposition Implemented in PowerArray 100 faster than SAS Multivariate approach Cross-metabolite error model: not recommended unless n is very small (df 10) PCA/PLS method: useful if n

12、o replicates,Metabolite selection: example,ANOVA ModelingTwo-way ANOVAConsider block effectsSpecify interesting contrasts,ANOVA modeling resultsSignificant metabolitesMeans for each conditionsFold changes,Unsupervised learning,Clustering Hierarchical clustering K-means/K-medians (partitioning) Profi

13、le clustering SVD/RSVD Ordination/segmentation for heatmaps Plots based on scores/loadings Gene shaving (iterative SVD),Profile clustering,Clustering based on profiles Different from K-means or hierarchical clustering No need to specify K Does not cluster all the observations only extract those with

14、 close neighbors Guarantee the quality of each cluster Works on a graph instead of a matrix,Profile clustering - NCI,Use correlation cutoff 0.90 Revealed 9 tight clusters. Most of the clusters include cell lines with the same cancer type.,Unexpected clusters?,MALME-3M (melanoma) are strongly correla

15、ted with other three renal cancersHS-578T (breast cancer), SF-268 (CNS cancer), HOP-92 (non small cell lung cancer) are totally different cell lines but they share similar metabolic profiles,Singular value decomposition,SVD in statisticsPrinciple component analysisPartial least squareCorrespondence

16、analysisBi-plot,SVD in -omics analysisPCA for clusteringSVD-based matrix imputationSVD for ordinationAffymetrix signal extraction,Robust singular value decomposition,Advantages: Robust to outliers Automatically deals with missing entries Different versions of approaches L2-ALS: Gabriel and Zamir (19

17、79) L1-ALS: Hawkins, Li Liu and Young (2002) LTS-ALS: Jack Liu and Young (2004),Alternating least trimmed squares,Least trimmed squares: Solves byEstimation General: genetic algorithm Single-variate has much better solutions We used Brents search,Supervised learning: GSK use,Regression PLS Stepwise

18、regression LARS/LASSO Classification PLS-DA / SIMCA SVM,Supervised learning: whats useful for drug discovery?,A model will not be particularly useful if it involves thousands of variables A model will not be useful it is not interpretable Therefore, a model is useful if is Easy to interpret Easy to

19、apply prediction Better than empirical guess Variable selection for regression or classification has attracted a lot of interest,Volcano plots,Scatter plots,Visualizing LSMeans,Heatmaps,Simca,Analyses PCA PLS PLS-DA / SIMCA Advantages Takes cares of missing data Good job on model validation,PowerArr

20、ay,Analyses High dimensional linear modeling RSVD/RPCA Profile clustering + pattern analysis (available soon) Advantages Public version is free SpotFire-like visualizations Extremely easy to use Available from http:/www.niss.org/PowerArray. Complete documentation available in Sep. Email or youngniss.org for questions,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1