ImageVerifierCode 换一换
格式:PPT , 页数:43 ,大小:2.40MB ,
资源ID:378376      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378376.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Analyzing Time Series Signals.ppt)为本站会员(周芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Analyzing Time Series Signals.ppt

1、Analyzing Time Series & Signals,Professor Melvin J. Hinich hinichmail.la.utexas.edu,2,Useful Models Should be Derived from Science,Linear autoregressive (AR) and vector AR models are the most widely applied model in contemporary time series methodology They are examples of discrete-time linear dynam

2、ical systems They almost never have a firm scientific foundation What are linear dynamical systems?,3,Linear Dynamical Systems,Continuous time System of first order differential equations System of pth order differential equations,Discrete-time System of first order difference equations System of pt

3、h order difference equations,They are almost equivalent,4,First Order Linear Differential Equation,Solution Exponential Trend: x(t)=x(0)ert,Forced First Order DE,5,Convolution,6,Discrete-time Convolution,7,1st Order Linear Discrete-Time Eqn.,Forced First Linear Difference Equation.,8,Linear Harmonic

4、 Oscillator,9,Harmonic Solution,c is called the damping parameter. Since it is positive the solution goes to zero as,10,2nd Order Discrete-time Equation,11,Example Impulse Response,12,Constant Coefficient Linear Dynamical System,13,Homogeneous Linear Dynamical System,14,Uncoupled System,15,Uncoupled

5、 System,The system is stable if all the rm 0,If wm=0 then the solution is an exponential.,damped oscillation,exploding exponential oscillation,unstable equilibrium,16,Impulse Response,17,Forced Linear Dynamical System,Uncoupled linear system,18,Complex Transfer Function,19,Autoregressive AR(p) Model

6、20,Discrete-time Linear System,Written as a first order homogeneous system,21,Discrete & Continuous-time Linear System,22,Discrete-time Solution,If there is no aliasing!,damped oscillation,unstable equilibrium,23,Aliasing,Aliasing is an identification problem,24,Exponential Trend,Trend only depends

7、 on the rate r & the initial value x(0) logx(t)-logx(0)=r t How should we model evolution of the rate r? Model rate using covariates and stochastic shocks Estimate trend from data using the model Analyze the residual process to test the model,25,Deterministic Trend Plus AR(p),Fit the trend using lea

8、st squares,Subtract estimated trend from y(tn),Estimate AR(p) from the residuals,Use orthogonal polynomials for curvilinear trend,26,Stochastic Trend,is a pure white noise process,creates a unit root in the implicit model,27,Implicit AR(p+1) Model,with the convention that,The z transform of the syst

9、em is,28,Stochastic Trend with Drift=0.2 se=5 AR(10),29,Identifying Linear Systems,Harder problem that is commonly believed There are many specifications that give similar correlations across variables Forecasting is the goal of this enterprise,30,Linear Dynamical System Plus Noise,31,A Simple First

10、 Order Nonlinear System,32,Example of a Simple Nonlinear Model,33,Nonlinear Model - Uniform Input s = 0.5, c = 0.05 , w = 0.2p , d = 0.5,34,Phase Plot of the Nonlinear Impulse Response,35,Phase Plot of the Linear Impulse Response,36,Results of a Least Squares AR Fit to the Data,Data: Skew = 0.288e-0

11、2 Kurtosis = 0.988,AR( 6) parameters & t values,a4 = 0.02 a6 = -0.01,166.9 60.5 22.8,Adjusted R Square = 0.401,a1= - 0.75 a2 = - 0.34 a3 = - 0.13,3.6 2.2,37,Moving Frame Detection Method,Data is prewhitened using an AR(20) fit Statistics from residuals of an AR( 7) fit to each frame Frame Length = 5

12、0 No. of frames = 2000 100 Bootstraps Sizes:H =0.00476 C =0.0276,38,Analyzing the Residuals - Whiteness,Standardize the data,Correlation Test Statistic for e 0.5,39,Analyzing the Residuals - Nonlinearity,Bicorrelation for lags r , s where 0 s r,Bicorrelation Test Statistic for e 0.5,40,C - Correlati

13、on Statistics,41,H - Bicorrelation Statistics,42,Standard Deviations & R2,43,One Approach to Estimating this Nonlinear Model,Divide the sample into overlapping frames,Estimate a linear model for each frame,Compute the eigenvalues for each frame model,Estimate the nonlinear parameter by least squares,Compute the log of each eigenvalue,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1