ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:1.34MB ,
资源ID:378377      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378377.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Anatomy and Physiology, Sixth Edition.ppt)为本站会员(周芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Anatomy and Physiology, Sixth Edition.ppt

1、21-1,Anatomy and Physiology, Sixth Edition,Rod R. Seeley Idaho State University Trent D. Stephens Idaho State University Philip Tate Phoenix College,Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.,*See PowerPoint Image Slides for all figures and tables pre-

2、inserted into PowerPoint without notes.,Chapter 21 Lecture Outline*,21-2,Chapter 21,Peripheral Circulation and Regulation,21-3,Peripheral Circulatory System,Systemic vessels Transport blood through most all body parts from left ventricle and back to right atrium Pulmonary vessels Transport blood fro

3、m right ventricle through lungs and back to left atrium Blood vessels and heart are regulated to ensure blood pressure is high enough for blood flow to meet metabolic needs of tissues,21-4,Blood Vessel Structure,Arteries Elastic, muscular, arterioles Capillaries Blood flows from arterioles to capill

4、aries Most of exchange between blood and interstitial spaces occurs across the walls Blood flows from capillaries to venous system Veins Venules, small veins, medium or large veins,21-5,Capillaries,Capillary wall consists mostly of endothelial cells Types classified by diameter/permeability Continuo

5、us Do not have fenestrae Fenestrated Have pores Sinusoidal Large diameter with large fenestrae,21-6,Capillary Network,Blood flows from arterioles through metarterioles, then through capillary network Venules drain network Smooth muscle in arterioles, metarterioles, precapillary sphincters regulates

6、blood flow,21-7,Structure of Arteries and Veins,Three layers except for capillaries and venules Tunica intima Endothelium Tunica media Vasoconstriction Vasodilation Tunica adventitia Merges with connective tissue surrounding blood vessels,21-8,Structure of Arteries,Elastic or conducting arteries Lar

7、gest diameters, pressure high and fluctuates Muscular or medium arteries Smooth muscle allows vessels to regulate blood supply by constricting or dilating Arterioles Transport blood from small arteries to capillaries,21-9,Structure of Veins,Venules and small veins Tubes of endothelium on delicate ba

8、sement membrane Medium and large veins Valves Allow blood to flow toward heart but not in opposite direction Atriovenous anastomoses Allow blood to flow from arterioles to small veins without passing through capillaries,21-10,Blood Vessel Comparison,21-11,Aging of the Arteries,Arteriosclerosis Gener

9、al term for degeneration changes in arteries making them less elastic Atherosclerosis Deposition of plaque on walls,21-12,Dynamics of Blood Circulation,Interrelationships between Pressure Flow Resistance Control mechanisms that regulate blood pressure Blood flow through vessels,21-13,Laminar and Tur

10、bulent Flow,Laminar flow Streamlined Outermost layer moving slowest and center moving fastest Turbulent flow Interrupted Rate of flow exceeds critical velocity Fluid passes a constriction, sharp turn, rough surface,21-14,Blood Pressure,Measure of force exerted by blood against the wall Blood moves t

11、hrough vessels because of blood pressure Measured by listening for Korotkoff sounds produced by turbulent flow in arteries as pressure released from blood pressure cuff,21-15,Blood Pressure Measurement,21-16,Blood Flow, Poiseuilles Law and Viscosity,Blood flow Amount of blood moving through a vessel

12、 in a given time period Directly proportional to pressure differences, inversely proportional to resistance,Poiseuilles Law Flow decreases when resistance increases Flow resistance decreases when vessel diameter increases Viscosity Measure of resistance of liquid to flow As viscosity increases, pres

13、sure required to flow increases,21-17,Critical Closing Pressure, Laplaces Law and Compliance,Critical closing pressure Pressure at which a blood vessel collapses and blood flow stopsLaplaces Law Force acting on blood vessel wall is proportional to diameter of the vessel times blood pressure,Vascular

14、 compliance Tendency for blood vessel volume to increase as blood pressure increases More easily the vessel wall stretches, the greater its compliance Venous system has a large compliance and acts as a blood reservoir,21-18,Physiology of Systemic Circulation,Determined by Anatomy of circulatory syst

15、em Dynamics of blood flow Regulatory mechanisms that control heart and blood vessels Blood volume Most in the veins Smaller volumes in arteries and capillaries,21-19,Cross-Sectional Area,As diameter of vessels decreases, the total cross-sectional area increases and velocity of blood flow decreases M

16、uch like a stream that flows rapidly through a narrow gorge but flows slowly through a broad plane,21-20,Pressure and Resistance,Blood pressure averages 100 mm Hg in aorta and drops to 0 mm Hg in the right atrium Greatest drop in pressure occurs in arterioles which regulate blood flow through tissue

17、s No large fluctuations in capillaries and veins,21-21,Pulse Pressure,Difference between systolic and diastolic pressures Increases when stroke volume increases or vascular compliance decreases Pulse pressure can be used to take a pulse to determine heart rate and rhythmicity,21-22,Capillary Exchang

18、e and Interstitial Fluid Volume Regulation,Blood pressure, capillary permeability, and osmosis affect movement of fluid from capillaries A net movement of fluid occurs from blood into tissues. Fluid gained by tissues is removed by lymphatic system.,21-23,Fluid Exchange Across Capillary Walls,21-24,V

19、ein Characteristics and Effect of Gravity on Blood Pressure,Vein Characteristics Venous return to heart increases due to increase in blood volume, venous tone, and arteriole dilation,Effect of Gravity In a standing position, hydrostatic pressure caused by gravity increases blood pressure below the h

20、eart and decreases pressure above the heart,21-25,Control of Blood Flow by Tissues,Local control In most tissues, blood flow is proportional to metabolic needs of tissues Nervous System Responsible for routing blood flow and maintaining blood pressure Hormonal Control Sympathetic action potentials s

21、timulate epinephrine and norepinephrine,21-26,Local Control of Blood Flow by Tissues,Blood flow can increase 7-8 times as a result of vasodilation of metarterioles and precapillary sphincters in response to increased rate of metabolism Vasodilator substances produced as metabolism increases Vasomoti

22、on is periodic contraction and relaxation of precapillary sphincters,21-27,Nervous Regulation of Blood Vessels,21-28,Short-Term Regulation of Blood Pressure,Baroreceptor reflexes Change peripheral resistance, heart rate, and stroke volume in response to changes in blood pressure Chemoreceptor reflex

23、es Sensory receptors sensitive to oxygen, carbon dioxide, and pH levels of blood Central nervous system ischemic response Results from high carbon dioxide or low pH levels in medulla and increases peripheral resistance,21-29,Baroreceptor Reflex Control,21-30,Chemoreceptor Reflex Control,21-31,Long-T

24、erm Regulation of Blood Pressure,Renin-angiotensin-aldosterone mechanism Vasopressin (ADH) mechanism Atrial natriuretic mechanism Fluid shift mechanism Stress-relaxation response,21-32,Renin-Angiotensin-Aldosterone Mechanism,21-33,Vasopressin (ADH) Mechanism,21-34,Long Term Mechanisms,Atrial natriur

25、etic Hormone released from cardiac muscle cells when atrial blood pressure increases, simulating an increase in urinary production, causing a decrease in blood volume and blood pressure,Fluid shift Movement of fluid from interstitial spaces into capillaries in response to decrease in blood pressure

26、to maintain blood volume Stress-relaxation Adjustment of blood vessel smooth muscle to respond to change in blood volume,21-35,Shock,Inadequate blood flow throughout body Three stages Compensated: Blood pressure decreases only a moderate amount and mechanisms able to reestablish normal blood pressure and flow Progressive: Compensatory mechanisms inadequate and positive feedback cycle develops; cycle proceeds to next stage or medical treatment reestablishes adequate blood flow to tissues Irreversible: Leads to death, regardless of medical treatment,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1