1、Application of MEMS in Optobionics: Retinal Implant,By Alessandro Beghini PhD Student Northwestern University,Outline,Eye physiology and retinal diseases Approaches to the problem: epiretinal and subretinal microimplant Characteristic of the approaches (descriptions, microfabrication,) Biocompatibil
2、ity Comparison of the two approaches Applications Conclusion (feasibility),Human Eye,Retina Physiology,Photoreceptors,Retina neural layer,Eye,Retinal Diseases,Principal diseases: Retinitis Pigmentosa (RP) and Age related Macular Degeneration(AMD);Symptoms: night blindness, lost peripheral vision (tu
3、nnel vision), loss of the ability to discriminate color;Possible cure: use of vitamin A;Current research on the genes which causes RP.,Approaches to Retinal Diseases,The epiretinal approach stimulates the ganglion cells.,The subretinal approach replaces photoreceptors and photodiodes.,Epiretinal Mic
4、roimplant (I),Epiretinal Microimplant: Components (II),Main components:Retina encoderTelemetry linkStimulator device,Characteristics (III),Photodiode with light sensitivity higher than 140 dB,Spatial filtering,Convolution of the of pixel parameters,Receiver units: rectification, demodulation, decodi
5、ng,Generation of spike trains,Microfabrication (IV),The most important point in epiretinal implant is the microfabrication of polymide film:,Subretinal Microimplant (I),The device resembles the degenerated photoreceptors, therefore the retina must be only partially damaged to apply this approach,Fin
6、al device,Microfabrication (II),Oxidation (TEOS),Photoresist layer,Etching of contact hole,Titanium nitride deposited and micropatterned by lift off,Grooves for chip separation,Characteristics (III),2000-5000 photodiode cells on a single device,Cell size: 20x20 m2 up to 200x200 m2,Improved coupling
7、between photoreceptors and bipolar cell,Contact layer: p-doped SI:H, monocrystalline SI, metal induced crystallization (high perpendicular conductivity and low lateral parasitic loss),Biocompatibility,Main concern: chronic inflammation and cellular reaction,Muller cell could scar the retinal surface
8、 and generate traction forces which could detach the retina,Stabilization of the electrode matrix,By electrodesBy adhesives,Epiretinal and Subretinal Device: Pros and Cons,Epiretinal Approach: No need for intact neurons In-vivo experiment must be conducted Low number of electrode sites,Subretinal Ap
9、proach:Simpler structureNo need for an external cameraNot influenced from outside,Applications and Experiments,Implantation in pigs and rabbits revealed the decay of the passivation layer for a subretinal device:,Titanium nitride electrodes are biostable for a period of 18 month,Application in human
10、 of the subretinal implant is an important on going research,Conclusion,This research has shown the possible applications of MEMS technology in curing important retinal diseases. Both epiretinal and subretinal approaches has been analyzed and microfabrication processes has been described. However, the implemented systems are still far from natures sophistication.,Future Research,Extend the number of active microchips to three and glue them to a PI foil. Improve biostability. Increase the number of electrode. Perform more experiment. Study in genetics and tissue engineering.,Thank you!,
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1