ImageVerifierCode 换一换
格式:PPT , 页数:27 ,大小:517.50KB ,
资源ID:378633      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378633.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Assessing and Comparing Classification Algorithms.ppt)为本站会员(visitstep340)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Assessing and Comparing Classification Algorithms.ppt

1、Assessing and Comparing Classification Algorithms,Introduction Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comparing Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),2,Introduction,Question

2、s: Assessment of the expected error of a learning algorithm: Is the error rate of 1-NN less than 2%? Comparing the expected errors of two algorithms: Is k-NN more accurate than MLP ? Training/validation/test sets Resampling methods: K-fold cross-validation,Lecture Notes for E Alpaydn 2004 Introducti

3、on to Machine Learning The MIT Press (V1.1),3,Algorithm Preference,Criteria (Application-dependent): Misclassification error, or risk (loss functions) Training time/space complexity Testing time/space complexity Interpretability Easy programmability Cost-sensitive learning,Assessing and Comparing Cl

4、assification Algorithms,Introduction Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comparing Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),5,Resampling and K-Fold Cross-Validation,The need

5、 for multiple training/validation setsXi,Vii: Training/validation sets of fold i K-fold cross-validation: Divide X into k, Xi,i=1,.,KTi share K-2 parts,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),6,52 Cross-Validation,5 times 2 fold cross-validation (Diette

6、rich, 1998),Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),7,Bootstrapping,Draw instances from a dataset with replacement Prob that we do not pick an instance after N drawsthat is, only 36.8% is new!,Assessing and Comparing Classification Algorithms,Introducti

7、on Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comparing Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),9,Measuring Error,Error rate = # of errors / # of instances = (FN+FP) / N Recall =

8、# of found positives / # of positives = TP / (TP+FN) = sensitivity = hit rate Precision = # of found positives / # of found= TP / (TP+FP) Specificity = TN / (TN+FP) False alarm rate = FP / (FP+TN) = 1 - Specificity,Methods for Performance Evaluation,How to obtain a reliable estimate of performance?P

9、erformance of a model may depend on other factors besides the learning algorithm: Class distribution Cost of misclassification Size of training and test sets,Learning Curve,Learning curve shows how accuracy changes with varying sample size Requires a sampling schedule for creating learning curve: Ar

10、ithmetic sampling (Langley, et al) Geometric sampling (Provost et al)Effect of small sample size: Bias in the estimate Variance of estimate,ROC (Receiver Operating Characteristic),Developed in 1950s for signal detection theory to analyze noisy signals Characterize the trade-off between positive hits

11、 and false alarms ROC curve plots TP (on the y-axis) against FP (on the x-axis) Performance of each classifier represented as a point on the ROC curve changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point,http:/en.wikipedia.org/wiki/Receiver_operat

12、ing_characteristic,http:/www.childrensmercy.org/stats/ask/roc.asp,ROC Curve,- 1-dimensional data set containing 2 classes (positive and negative) - any points located at x t is classified as positive,ROC Curve,(TP,FP): (0,0): declare everything to be negative class (1,1): declare everything to be po

13、sitive class (1,0): idealDiagonal line: Random guessing Below diagonal line:prediction is opposite of the true class,Using ROC for Model Comparison,No model consistently outperform the other M1 is better for small FPR M2 is better for large FPRArea Under the ROC curve Ideal: Area = 1 Random guess:Ar

14、ea = 0.5,How to Construct an ROC curve,Use classifier that produces posterior probability for each test instance P(+|A)Sort the instances according to P(+|A) in decreasing orderApply threshold at each unique value of P(+|A)Count the number of TP, FP, TN, FN at each thresholdTP rate, TPR = TP/(TP+FN)

15、FP rate, FPR = FP/(FP + TN),How to construct an ROC curve,Threshold =,ROC Curve:,+ + - + - - - + - +,+,-,Reverse of above order,Assessing and Comparing Classification Algorithms,Introduction Resampling and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comp

16、aring Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),19,Interval Estimation,X = xt t where xt N ( , 2) m N ( , 2/N),100(1- ) percent confidence interval,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),20,When

17、2 is not known:,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),21,Hypothesis Testing,Reject a null hypothesis if not supported by the sample with enough confidence X = xt t where xt N ( , 2)H0: = 0 vs. H1: 0 Accept H0 with level of significance if 0 is in the

18、100(1- ) confidence intervalTwo-sided test,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),22,One-sided test: H0: 0 vs. H1: 0 Accept ifVariance unknown: Use t, instead of z Accept H0: = 0 if,Assessing and Comparing Classification Algorithms,Introduction Resampl

19、ing and Cross Validation Measuring Error Interval Estimation and Hypothesis Testing Assessing and Comparing Performance,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),24,Assessing Error: H0: p p0 vs. H1: p p0,Single training/validation set: Binomial TestIf err

20、or prob is p0, prob that there are e errors or less in N validation trials is,1- ,Accept if this prob is less than 1- ,N=100, e=20,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),25,Normal Approximation to the Binomial,Number of errors X is approx N with mean N

21、p0 and var Np0(1-p0),Accept if this prob for X = e is less than z1-,1- ,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),26,Paired t Test,Multiple training/validation sets xti = 1 if instance t misclassified on fold i Error rate of fold i:With m and s2 average a

22、nd var of pi we accept p0 or less error ifis less than t,K-1,Lecture Notes for E Alpaydn 2004 Introduction to Machine Learning The MIT Press (V1.1),27,K-Fold CV Paired t Test,Use K-fold cv to get K training/validation folds pi1, pi2: Errors of classifiers 1 and 2 on fold i pi = pi1 pi2 : Paired difference on fold i The null hypothesis is whether pi has mean 0,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1