ImageVerifierCode 换一换
格式:PPT , 页数:30 ,大小:2.71MB ,
资源ID:378637      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378637.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Assessing Chip-Level Impact of Double Patterning Lithography.ppt)为本站会员(sumcourage256)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Assessing Chip-Level Impact of Double Patterning Lithography.ppt

1、Assessing Chip-Level Impact of Double Patterning Lithography,Kwangok Jeong*, Andrew B. Kahng*,*, and Rasit O. Topaloglu*http:/vlsicad.ucsd.edu/* ECE Dept., UC San Diego * CSE Dept., UC San Diego * GlobalFoundries, Inc.,Outline,Double Patterning Lithography (DPL) Traditional Interconnect Analysis Add

2、itional Variability in DPL Misalignment in Double Patterning Analysis in Different DPL Options Experiments Conclusion,Outline,Double Patterning Lithography (DPL) Traditional Interconnect Analysis Additional Variability in DPL Misalignment in Double Patterning Analysis in Different DPL Options Experi

3、ments Conclusion,Double Patterning Lithography (DPL),Pattern-doubling: 2X-resolution lithography with 1X-resolution equipmentTaxonomy Resist type: positive /negative Methods: double exposure (DE) / double patterning (DP) / spacer double patterning (SDP) Printed feature: line / space,Traditional Inte

4、rconnect Analysis,Designers use capacitance tables from foundries2D/3D field solver with variations Capacitance tables Major sources of variation: Metal/dielectric density-dependent systematic variation Random process variation Results of variation Width (W) variation Metal height (H) variation Diel

5、ectric thickness (D) variation, etc.,Traditional interconnect variation analysis,1. for (i = -3 ; i 3 ; i=i+1) for (j = -3 ; j 3 ; j=j+1) for (k = -3 ; k 3 ; k=k+1) W=Wnom + iWH= Hnom + jHD= Dnom + kDrun field solver over parameterized structureFind nominal and worst-case capacitance,Additional Vari

6、ability in DPL,Overlay error Causes: mask misalignment material stress-impacted deformations litho-/etch-impacted topography lens aberration, etc. Impacts on DPL Width variation Space (or pitch) variation Capacitance variation,Alignment metricIndirect: Two DPL masks aligned to a reference layer Erro

7、r: Direct: Second DPL mask aligned to the first DPL mask Error:,Indirect Alignment (IA),Cc,Cg,Direct Alignment (DA),Outline,Double Patterning Lithography (DPL) Traditional Interconnect Analysis Additional Variability in DPL Misalignment in Double Patterning Analysis in Different DPL Options Experime

8、nts Conclusion,Misalignment in Positive DE/DP,Space on one side increases Space on the other side decreasesRequired design of experiments foreach S (-3 3)mask1 shift by +S/2mask2 shift by S/2 end,After exposure + etch,Cu filling,(misaligned to left),Misalignment in Negative DE/DP,1,2,1,2,1,W,W,S,S,P

9、P,S/2,mask1,mask2 (misaligned to left),Negative photoresist,Dielectric,After exposure + etch,After filling Cu,Width of one increases Width of the other decreases Required design of experiments foreach S (-3 3)mask1 change W by +S shift by S/2mask2 change W by S shift by S/2 end,Spacer Thickness Var

10、iation in Positive SDP,Dielectric,(kind of) Positive photoresist,Spacers (act as if masks),Width and space change Required design of experiments foreach S (-3 3)mask1 change W by 0mask2 change W by +S end,Spacer Thickness Variation in Negative SDP,Primary patterns,Dielectric,After exposure + etch,Af

11、ter filling Cu,Spacers (act as if masks),(kind of ) Negative photoresist,Cu,Width and space change Required design of experiments foreach S (-3 3)mask1 change W by +S/2 shift by +S/4mask2 change W by +S/2 shift by S/4 end,Outline,Double Patterning Lithography (DPL) Traditional Interconnect Analysis

12、Misalignment in Double Patterning Analysis in Different DPL Options Experiments Conclusion,Photoresist,Process,Alignment,Experiments: Scenarios,We examine impact of misalignment and linewidth variation across various DPL options,Parallel 5-Interconnect Structure (TCAD tool),Interconnects in a full-c

13、hip (Signoff RCX),DE,DP,SDP,Direct,DE,DP,SDP,TCAD-Based BEOL Analysis Results,Capacitance variation due to misalignment in DE/DP IA shows larger variation than DA Negative resist processes have larger variation,Capacitance variation in different DPL options SDP has larger variation Negative resist p

14、rocesses have larger variation,Capacitance (aF/um),Capacitance (aF/um),Design-Level Analysis - Flow,Overlay-aware extraction flow,Overlay error can cause more than +/- 10% capacitance variation within a die, for all DPL options Large on-chip variation Increase of timing optimization difficulty,Capac

15、itance Variation (%),Design-Level Capacitance Variation,M2,M3,M4,M5,A net having maximum crosstalk delay (17um long) SDP shows more sensitivity tighten overlay spec P-DE/DP shows least sensitivity lessen overlay spec,Maximum Crosstalk-Induced Delay,Total Negative Slack Variation,SDP, especially for

16、lower layer (smaller feature), shows more sensitivity tighter overlay spec,TNS Variation (%),Outline,Double Patterning Lithography (DPL) Traditional Interconnect Analysis Misalignment in Double Patterning Analysis in Different DPL Options Experiments Conclusion,Summary of Observations,Overlay error

17、with indirect alignment (IA) results in higher capacitance variations compared to direct alignment (DA) Capacitance can vary 10% due to misalignment Large OCV increase timing optimization difficulty Timing can be degraded significantly, e.g., 10% worse TNS P-DE/DP may be the most favorable option fo

18、r BEOL DPL With the same 3 overlay control, the variation in P-DE/DP is 50% of N-DE/DP or P-SDP, and 25% of N-SDP Overlay control spec for P-DE/DP can be relaxed by 2X compared to others,Conclusion and Ongoing Work,We provide a variational interconnect analysis framework for double patterning lithog

19、raphy We analyze mechanisms of interconnect variations due to misalignment and spacer thickness variation in DPL We provide both interconnect and design-level RC-extraction framework reflecting interconnect variation in a 45nm DPL process We compare the impact of overlay error in different DPL optio

20、ns Ongoing work Development of timing analysis and optimization methodology considering interconnect variation in DPL Incorporation of statistical techniques to target pessimism reduction,Thank You!,Impact of Misalignment on FEOL,Standard cell decompositionExperimental setup 10nm 3 misalignment is a

21、ssumed between layers Design of experiments (all permutation: 3*3*3*3 = 81 cases) P1: -10nm (L) / 0nm (C) / +10nm (R) P2: -10nm (L) / 0nm (C) / +10nm (R) M: -10nm (L) / 0nm (C) / +10nm (R) C: -10nm (L) / 0nm (C) / +0nm (R),Experimental Results on FEOL,FlowImpact of misalignment on cell delay is negl

22、igibly small ( 2%) Capacitance variation due to misalignment gate capacitance,Measured Delay Variation (%),Tr-level RC-Extraction,STAR-RCXT,Circuit Simulation,HSPICE,DPL Options,Double Exposure,Double Patterning,Spacer-DP,Photoresist,Printed Feature,Mask Coloring and Layout Examples in DPL,Mechanism

23、 of misalignment-induced variation,(a) DE and DP Process,(b) SDP Process,Original patterns,Original patterns,Coloring,Patterns 1,Patterns 2,Coloring,Spacer formation (Large spacer),Trim & repair (dark gray),S,S,Narrow space,W,W”,Dummy for pattern 6,1,4,5,2,3,6,Spacer (gray),a,b,Design-Level Analysis

24、 - DOE,Design of Experiments for DE/DP with DA,foreach layer M2, M3, M4, M5 decompose layer into layermask1 and layermask2foreach S -3/2, -2/2, -/2, 0, /2, 2/2, 3/2 shift layermask1 by Sshift layermask2 by Sendlayer layermask1 + layermask2foreach W -3/2, -2/2, -/2, 0, /2, 2/2, 3/2resize layer by W e

25、ndmerge with other layersRC-Extraction and Timing Analysisend,Impact on Capacitance Variation,Total interconnect capacitance: maximum C(%) Among top 20% high capacitance nets Impact of overlay impact of widthSum of capacitance in the most critical path Critical path has short interconnects impact of

26、 BEOL variation significantly reduces Impact of overlay impact of width,Impact on Crosstalk-Induced Delay,Maximum coupling induced delay change PrimeTime-SI (Synopsys) is used to find a net that is mostly affected due to crosstalk Temporal/functional filtering is performed Selected net structureA ne

27、t with relatively small length (17um) can have 10% delay changes due to overlay error,Capacitance when Delay is minimum,Capacitance when Delay is maximum,Impact on Timing,Longest path and total negative slack (TNS)Impact of overlay impact of widthLongest path delay changes negligiblyHowever, overall timing (TNS) can change significantly,Total Negative Slack (ns),

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1