ImageVerifierCode 换一换
格式:PPT , 页数:25 ,大小:405.50KB ,
资源ID:378649      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378649.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Assignment #3Solutions.ppt)为本站会员(eventdump275)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Assignment #3Solutions.ppt

1、Assignment #3 Solutions,January 24, 2006,January 24, 2006,Practical Aspects of Modern Cryptography,Problem #1,Use Fermats Little Theorem and induction on k to prove thatxk(p1)+1 mod p = x mod pfor all primes p and k 0.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #1,By induction

2、on k Base case k = 0:xk(p1)+1 mod p = x0+1 mod p = x mod p Base case k = 1:xk(p1)+1 mod p = x(p-1)+1 mod p= xp mod p = x mod p(by Fermats Little Theorem),January 24, 2006,Practical Aspects of Modern Cryptography,Answer #1 (cont.),Inductive step:Assume that xk(p1)+1 mod p = x mod p.Prove that x(k+1)(

3、p1)+1 mod p = x mod p.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #1 (cont.),x(k+1)(p1)+1 mod p= xk(p1)+(p-1)+1 mod p= xk(p1)+1+(p-1) mod p= xk(p1)+1x(p-1) mod p= x x(p-1) mod p (by inductive hypothesis)= xp mod p= xp mod p (by Fermats Little Theorem),January 24, 2006,Practical

4、 Aspects of Modern Cryptography,Problem #2,Show that for distinct primes p and q, x mod p = y mod p x mod q = y mod qtogether imply that x mod pq = y mod pq.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #2,x mod p = y mod p (x mod p) (y mod p) = 0 (x y) mod p = 0 (by first assign

5、ment) (x y) is a multiple of p.Similarly x mod q = y mod q (x y) is a multiple of q.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #2 (cont.),Therefore, (x y) is a multiple of pq (x y) mod pq = 0 (x mod pq) (y mod pq) = 0 x mod pq = y mod pq.,January 24, 2006,Practical Aspects of

6、Modern Cryptography,Problem #3,Put everything together to prove that xK(p1)(q-1)+1 mod pq = x mod pq For K 0 and distinct primes p and q.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #3,Let k1=K(q1) and k2=K(p1).xK(p1)(q-1)+1 mod p = xk1(p1)+1 mod p = x mod p andxK(p1)(q-1)+1 mod

7、 q = xk1(q1)+1 mod q = x mod q By Problem #1, and then by Problem #2 xK(p1)(q-1)+1 mod pq = x mod pq.,January 24, 2006,Practical Aspects of Modern Cryptography,Problem #4,E(x) = x43 mod 143 Find the inverse function D(x) = xd mod 143.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer

8、#4,143 = 1113 We need to find d such that 43d mod (111)(131) = 1.Use the Extended Euclidean Algorithm to find a solution to find x and y such that 120x + 43y = 1.,January 24, 2006,Practical Aspects of Modern Cryptography,Extended Euclidean Algorithm,Given A,B 0, set x1=1, x2=0, y1=0, y2=1, a1=A, b1=

9、B, i=1.Repeat while bi0: i = i + 1; qi = ai-1 div bi-1; bi = ai-1-qibi-1; ai = bi-1;xi+1=xi-1-qixi; yi+1=yi-1-qiyi.For all i: Axi + Byi = ai. Final ai = gcd(A,B).,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Ans

10、wer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography

11、,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Answer #4 (cont.),January 24, 2006,Practical Aspects of Modern Cryptography,Problem #5,Digital Signature AlgorithmPublic parameters: q = 11, p = 67, g = 9, y = 62 Private secret: x = 4 Message to be signed: M = 8 Selected r

12、andom parameter: k = 2,January 24, 2006,Practical Aspects of Modern Cryptography,The Digital Signature Algorithm,To sign a 160-bit message M, Generate a random integer k with 0 k q, Compute r = (gk mod p) mod q, Compute s = (M+xr)/k) mod q.The pair (r,s) is the signature on M.,January 24, 2006,Pract

13、ical Aspects of Modern Cryptography,Answer #5,r = (gk mod p) mod q= (92 mod 67) mod 11= (81 mod 67) mod 11 = 14 mod 11 = 3 s = (M+xr)/k) mod q= (8+43)/2) mod 11= (20/2) mod 11 = 10 mod 11 = 10 The pair (3,10) is the signature on 8.,January 24, 2006,Practical Aspects of Modern Cryptography,The Digita

14、l Signature Algorithm,A signature (r,s) on M is verified as follows: Compute w = 1/s mod q, Compute a = wM mod q, Compute b = wr mod q, Compute v = (gayb mod p) mod q.Accept the signature only if v = r.,January 24, 2006,Practical Aspects of Modern Cryptography,Answer #5 (cont.),w = 1/s mod q = 1/10 mod 11 = 10 a = wM mod q = 108 mod 11 = 3 b = wr mod q = 103 mod 11 = 8 v = (93628 mod 67) mod 11= (5915 mod 67) mod 11= 14 mod 11 = 3v = 3 and r = 3 so the signature is validated.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1