ImageVerifierCode 换一换
格式:PPT , 页数:30 ,大小:1.64MB ,
资源ID:378713      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378713.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(AudioDB- Scalable approximate nearest-neighbor search with .ppt)为本站会员(ownview251)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

AudioDB- Scalable approximate nearest-neighbor search with .ppt

1、Thursday, November 13, 2008,ASA 156: Statistical Approaches for Analysis of Music and Speech Audio Signals,AudioDB: Scalable approximate nearest-neighbor search with automatic radius-bounded indexing,Michael A. Casey Digital Musics Dartmouth College, Hanover, NH,Scalable Similarity,8M tracks in comm

2、ercial collection PByte of multimedia data Require passage-level retrieval ( 2 bars) Require scalable nearest-neighbor methods,Specificity,Partial track retrieval Alternate versions: remix, cover, live, album Task is mid-high specificity,Example: remixing,Original Track Remix 1 Remix 2 Remix 3,Audio

3、 Shingles, concatenate l frames of m dimensional features,A shingle is defined as:,Shingles provide contextual information about features Originally used for Internet search engines: Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, Geoffrey Zweig: “Syntactic Clustering of the Web”. Computer Ne

4、tworks 29(8-13): 1157-1166 (1997) Related to N-grams, overlapping sequences of featuresApplied to audio domain by Casey and Slaney : Casey, M. Slaney, M. “The Importance of Sequences in Musical Similarity”, in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006,Audio

5、Shingle Similarity,Audio Shingle Similarity, a query shingle drawn from a query track Q, database of audio tracks indexed by (n), a database shingle from track n,Shingles are normalized to unit vectors, therefore:,For shingles with M dimensions (M=l.m); m=12, 20; l=30,40,Open source: google: “audioD

6、B” Management of tracks, sequences, salience Automatic indexing parameters OMRAS2, Yahoo!, AWAL, CHARM, more Web-services interface (SOAP / JSON) Implementation of LSH for large N 1B 1-10 ms whole-track retrieval from 1B vectors,AudioDB: Shingle Nearest Neighbor Search,AudioDB: Shingle Nearest Neigh

7、bor Search,Whole-track similarity,Often want to know which tracks are similar Similarity depends on specificity of task Distortion / filtering / re-encoding (high) Remix with new audio material (mid) Cover song: same song, different artist (mid),Whole-track resemblance: radius-bounded search,Compute

8、 the number of shingle collisions between two tracks:,Whole-track resemblance: radius-bounded search,Compute the number of shingle collisions between two tracks:,Requires a threshold for considering shingles to be relatedNeed a way to estimate relatedness (threshold) for data set,Statistical approac

9、hes to modeling distance distributions,Distribution of minimum distances,Database: 1.4 million shingles. The left bump is the minimum between 1000 randomly selected query shingles and this database. The right bump is a small sampling (1/98 000 000) of the full histogram of all distances.,Radius-boun

10、ded retrieval performance: cover song (opus task),Performance depends critically on xthresh, the collision thresholdWant to estimate xthresh automatically from unlabelled data,Order Statistics,Minimum-value distribution is analytic Estimate the distribution parameters Substitute into minimum value d

11、istribution Define a threshold in terms of FP rate This gives an estimate of xthresh,Estimating xthresh from unlabelled data,Use theoretical statistics Null Hypothesis: H0: shingles are drawn from unrelated tracks Assume elements i.i.d., normally distributed M dimensional shingles, d effective degre

12、es of freedom: Squared distance distribution for H0,ML for background distribution,Likelihood for N data points (distances squared)d = effective degrees of freedomM = shingle dimensionality,Background distribution parameters,Likelihood for N data points (distances squared)d = effective degrees of fr

13、eedomM = shingle dimensionality,Minimum value over N samples,Minimum value distribution of unrelated shingles,Estimate of xthresh, false positive rate,Unlabelled data experiment,Unlabelled data set Known to contain: cover songs (same work, different performer) Near duplicate recordings (misattributi

14、on, encoding) Estimate background distance distribution Estimate minimum value distribution Set xthresh so FP rate is = 1% Whole-track retrieval based on shingle collisions,Cover song retrieval,Scaling,Locality sensitive hashing Trade-off approximate NN for time complexity 3 to 4 orders of magnitude

15、 speed-up No noticeable degradation in performance For optimal radius threshold,LSH,Remix retrieval via LSH,Current deployment,Large commercial collections AWAL 100,000 tracks Yahoo! 2M+ tracks, related song classifier AudioDB: open-source, international consortium of developers Google: “audioDB”,Co

16、nclusions,Radius-bounded retrieval model for tracks Shingles preserve temporal information, high d Implements mid-to-high specificity search Optimal radius threshold from order statistics null hypothesis: shingles are drawn from unrelated tracks LSH requires radius bound, automatic estimate Scales to 1B shingles+ using LSH,Thanks,Malcolm Slaney, Yahoo! Research Inc. Christophe Rhodes, Goldsmiths, U. of London Michela Magas, Goldsmiths, U. of London Funding: EPSRC: EP/E02274X/1,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1