ImageVerifierCode 换一换
格式:PPT , 页数:14 ,大小:1.34MB ,
资源ID:378737      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378737.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Automated Model-Building with TEXTAL.ppt)为本站会员(appealoxygen216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Automated Model-Building with TEXTAL.ppt

1、Automated Model-Building with TEXTAL,Thomas R. Ioerger Department of Computer Science Texas A&M University,Automated model-building programCan we automate the kind of visual processing of patterns that crystallographers use? Intelligent methods to interpret density, despite noise Exploit knowledge a

2、bout typical protein structure Focus on medium-resolution maps optimized for 2.8A (actually, 2.6-3.2A is fine) typical for MAD data (useful for high-throughput) other programs exist for higher-res data (ARP/wARP),Overview of TEXTAL,Electron density map (not structure factors),TEXTAL,Protein model (m

3、ay need refinement),Main Stages of TEXTAL,electron density map,CAPRA,Ca chains,LOOKUP,model (initial coordinates),model (final coordinates),Post-processing routines,Reciprocal-space refinement/DM,Human Crystallographer (editing),build-in side-chain and main-chain atoms locally around each Ca,example

4、 real-space refinement,CAPRA: C-Alpha Pattern-Recognition Algorithm,tracing,linking,Neural network: estimates which pseudo-atoms are closest to true Cas,Example of Ca-chains fit by CAPRA,% built: 84% # chains: 2 lengths: 47, 88 RMSD: 0.82A,Rat a2 urinary protein (P. Adams) data: 2.5A MR map generat

5、ed at 2.8A,Stage 2: LOOKUP,LOOKUP is based on Pattern Recognition Given a local (5A-spherical) region of density, have we seen a pattern like this before (in another map)? If so, use similar atomic coordinates. Use a database of maps with known structures 200 proteins from PDB-Select (non-redundant)

6、 back-transformed (calculated) maps at 2.8A (no noise) regions centered on 50,000 Cas Use feature extraction to match regions efficiently feature (e.g. moments) represent local density patterns features must be rotation-invariant (independent of 3D orientation) use density correlation for more preci

7、se evaluation,Examples of Numeric Density Features,Distance from center-of-sphereto center-of-mass Moments of inertia - relativedispersion along orthogonal axes Geometric features like “Spoke angles” Local variance and other statistics,TEXTAL uses 19 distinct numeric features to represent the patter

8、n of density in a region, each calculated over 4 different radii, for a total of 76 features.,F=,F=,F=,F=,Database of known maps,Region in map to be interpreted,The LOOKUP Process,Find optimal rotation,Stage 3: Post-Processing,Interfaces for Using TEXTAL,Stand-alone commands and scripts capra-scale

9、prot.xplor prot-scaled.xplor neotex.sh myprotein textal.log lots of intermediate files and logs WINTEX: Tcl/Tk interface creates jobs in sub-directories Public Release: July 2004 http:/textal.tamu.edu:12321 Integrated into Phenix http:/phenix-online.org Python module model-building tasks in GUI,Gall

10、ery of Examples,Conclusions,Pattern recognition is a successful technique for macromolecular model-building Future directions: building ligands, co-factors, etc. recognizing disulfide bridges phase improvement (iterating with refinement) loop-building further integration with Phenix Intelligent Agen

11、t-based methods for guiding/automating model-building interactive graphics for specialized needs (e.g. fixing chains, editing identities),Acknowledgements,Funding: National Institutes of Health People: James C. Sacchettini Kevin Childs, Kreshna Gopal, Lalji Kanbi, Erik McKee, Reetal Pai, Tod Romo Our association with the PHENIX group: Paul Adams (Lawrence Berkeley National Lab) Randy Read (Cambridge University) Tom Terwilliger (Los Alamos National Lab),

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1