ImageVerifierCode 换一换
格式:PPT , 页数:17 ,大小:1,020.50KB ,
资源ID:378739      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378739.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Automated Solution of Realistic Near-Optimal Aircraft .ppt)为本站会员(appealoxygen216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Automated Solution of Realistic Near-Optimal Aircraft .ppt

1、Automated Solution of Realistic Near-Optimal Aircraft Trajectories Using Computational Optimal Control and Inverse Simulation,Janne Karelahti and Kai Virtanen Helsinki University of Technology, Espoo, FinlandJohn strm VTT Technical Research Center, Espoo, Finland,The problem,How to compute realistic

2、 a/c trajectories? Optimal trajectories for various missions Minimum time problems, missile avoidance, . Trajectories should be flyable by a real aircraft Rotational motion must be considered as well Solution process should be user-oriented Suitable for aircraft engineers and fighter pilots,Computat

3、ionally infeasible for sophisticated a/c models,No prerequisites about underlying mathematical methodologies,Appropriate vehicle models?,Automated approach,Solve a realistic near-optimal trajectory,Define the problem,Compute initial iterate,Compute optimal trajectory,Inverse simulate optimal traject

4、ory,Sufficiently similar?,Realistic near-optimal trajectory,Evaluate the trajectories,Adjust solver parameters,Coarse a/c model,Delicate a/c model,1.,2.,3.,4.,5.,6.,7.,8.,9.,No,Yes,2. Define the problem,Mission: performance measure of the a/c Aircraft minimum time problems Missile avoidance problems

5、 State equations: a/c & missile Control and path constraints Boundary conditions Vehicle parameters: lift, drag, thrust, .,Angular rate and acceleration, Load factor, Dynamic pressure, Stalling, Altitude, .,3. Compute initial iterate,3-DOF models, constrained a/c rotational kinematics Receding horiz

6、on control based method a/c chooses controls at Truncated planning horizon T t*f t0,Set k = 0. Set the initial conditions. Solve the optimal controls over tk, tk + T with direct shooting. Update the state of the system using the optimal control at tk. If the target has been reached, stop. Set k = k

7、+ 1 and go to step 2.,Direct shooting,Discretize the time domain over the planning horizon T Approximate the state equations by a discretization scheme Evaluate the control and path constraints at discrete instants Optimize the performance measure directly subject to the constraints using a nonlinea

8、r programming solver (SNOPT),t1 u1,t2 u2,t3 u3,t4 u4,tN uN,.,x1,x3,xN,.,T,Evaluated by a numerical integration scheme,4. Compute optimal trajectory,3-DOF models, constrained a/c rotational kinematics Direct multiple shooting method (with SQP) Discretization mesh follows from the RHC scheme,t0 u0,t1

9、u1,t2 u2,t3 u3,.,x1,x2,xN-2,tN=tf uN,tN-1 uN-1,Defect constraints,5-DOF a/c performance model Find controls u that produce the desired output history xD Desired output variables: velocity, load factor, bank angle Integration inverse method At tk+1, we have Solution by Newtons method: Define an error

10、 function Update scheme With a good initial guess,5. Inverse simulate optimal trajectory,Matrix of scale weights,Jacobian,Compare optimal and inverse simulated trajectories Visual analysis, average and maximum abs. errors Special attention to velocity, load factor, and bank angle If the trajectories

11、 are not sufficiently similar, then Adjust parameters affecting the solutions and recompute In the optimization, these parameters include Angular acceleration bounds, RHC step size, horizon length In the inverse simulation, these parameters include Velocity, load factor, and bank angle scale weights

12、,6. Evaluation of trajectories,Example implementation: Ace,MATLAB GUI: three panels for carrying out the process Optimization + Inverse simulation: Fortran programs Available missions Minimum time climb Minimum time flight Capture time Closing velocity Miss distance Missiles gimbal angle Missiles tr

13、acking rate Missiles control effort Vehicle models: parameters stored in separate type files Analysis of solutions via graphs and 3-D animation,Missile vs. a/c pursuit-evasionMissiles guidance laws: Pure pursuit, Command to Line-of-Sight, Proportional Navigation (True, Pure, Ideal, Augmented),Ace so

14、ftware,General data panel,a/c lift coefficient profile,3-D animation,Numerical example,Minimum time climb problem, Dt = 1 s Boundary conditions,Numerical example,Case g0=0 deg Inv. simulated:,Mach vs. altitude plot,Numerical example,Case g0=0 deg, average and maximum abs. errors,Velocity histories,L

15、oad factor histories,Numerical example,Make the optimal trajectory easier to attain Reduce RHC step size to Dt = 0.15 s Correct the lag in the altitude by increasing Wn = 1.0 h(tf)=9971,5 m, v(tf)=400 m/s,Numerical example,Case g0=0 deg, average and maximum abs. errors,Velocity histories,Load factor

16、 histories,Conclusion,The results underpin the feasibility of the approach Often, acceptable solutions obtained with the default settings Unsatisfactory solutions can be improved to acceptable ones 3-DOF and 5-DOF performance models are suitable choices Evaluation phase provides information for adjusting parameters Ace can be applied as an analysis tool or for education Aircraft engineers are able to use Ace after a short introduction,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1