ImageVerifierCode 换一换
你正在下载:

AVL Trees.ppt

[预览]
格式:PPT , 页数:43 ,大小:188KB ,
资源ID:378773      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378773.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(AVL Trees.ppt)为本站会员(proposalcash356)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

AVL Trees.ppt

1、AVL Trees,CSE 373 Data Structures Lecture 8,12/26/03,AVL Trees - Lecture 8,2,Readings,Reading Section 4.4,12/26/03,AVL Trees - Lecture 8,3,Binary Search Tree - Best Time,All BST operations are O(d), where d is tree depth minimum d is for a binary tree with N nodes What is the best case tree? What is

2、 the worst case tree? So, best case running time of BST operations is O(log N),12/26/03,AVL Trees - Lecture 8,4,Binary Search Tree - Worst Time,Worst case running time is O(N) What happens when you Insert elements in ascending order? Insert: 2, 4, 6, 8, 10, 12 into an empty BST Problem: Lack of “bal

3、ance”: compare depths of left and right subtree Unbalanced degenerate tree,12/26/03,AVL Trees - Lecture 8,5,Balanced and unbalanced BST,4,2,5,1,3,1,5,2,4,3,7,6,4,2,6,5,7,1,3,Is this “balanced”?,12/26/03,AVL Trees - Lecture 8,6,Approaches to balancing trees,Dont balance May end up with some nodes ver

4、y deep Strict balance The tree must always be balanced perfectly Pretty good balance Only allow a little out of balance Adjust on access Self-adjusting,12/26/03,AVL Trees - Lecture 8,7,Balancing Binary Search Trees,Many algorithms exist for keeping binary search trees balanced Adelson-Velskii and La

5、ndis (AVL) trees (height-balanced trees) Splay trees and other self-adjusting trees B-trees and other multiway search trees,12/26/03,AVL Trees - Lecture 8,8,Perfect Balance,Want a complete tree after every operation tree is full except possibly in the lower right This is expensive For example, inser

6、t 2 in the tree on the left and then rebuild as a complete tree,Insert 2 & complete tree,6,4,9,8,1,5,5,2,8,6,9,1,4,12/26/03,AVL Trees - Lecture 8,9,AVL - Good but not Perfect Balance,AVL trees are height-balanced binary search trees Balance factor of a node height(left subtree) - height(right subtre

7、e) An AVL tree has balance factor calculated at every node For every node, heights of left and right subtree can differ by no more than 1 Store current heights in each node,12/26/03,AVL Trees - Lecture 8,10,Height of an AVL Tree,N(h) = minimum number of nodes in an AVL tree of height h. Basis N(0) =

8、 1, N(1) = 2 Induction N(h) = N(h-1) + N(h-2) + 1 Solution (recall Fibonacci analysis) N(h) h ( 1.62),h-1,h-2,h,12/26/03,AVL Trees - Lecture 8,11,Height of an AVL Tree,N(h) h ( 1.62) Suppose we have n nodes in an AVL tree of height h. n N(h) (because N(h) was the minimum) n h hence log n h (relative

9、ly well balanced tree!) h 1.44 log2n (i.e., Find takes O(logn),12/26/03,AVL Trees - Lecture 8,12,Node Heights,1,0,0,2,0,6,4,9,8,1,5,1,height of node = h balance factor = hleft-hright empty height = -1,0,0,height=2 BF=1-0=1,0,6,4,9,1,5,1,Tree A (AVL),Tree B (AVL),12/26/03,AVL Trees - Lecture 8,13,Nod

10、e Heights after Insert 7,2,1,0,3,0,6,4,9,8,1,5,1,height of node = h balance factor = hleft-hright empty height = -1,1,0,2,0,6,4,9,1,5,1,0,7,0,7,balance factor 1-(-1) = 2,-1,Tree A (AVL),Tree B (not AVL),12/26/03,AVL Trees - Lecture 8,14,Insert and Rotation in AVL Trees,Insert operation may cause bal

11、ance factor to become 2 or 2 for some node only nodes on the path from insertion point to root node have possibly changed in height So after the Insert, go back up to the root node by node, updating heights If a new balance factor (the difference hleft-hright) is 2 or 2, adjust tree by rotation arou

12、nd the node,12/26/03,AVL Trees - Lecture 8,15,Single Rotation in an AVL Tree,2,1,0,2,0,6,4,9,8,1,5,1,0,7,0,1,0,2,0,6,4,9,8,1,5,1,0,7,12/26/03,AVL Trees - Lecture 8,16,Let the node that needs rebalancing be .There are 4 cases:Outside Cases (require single rotation) :1. Insertion into left subtree of

13、left child of .2. Insertion into right subtree of right child of .Inside Cases (require double rotation) :3. Insertion into right subtree of left child of .4. Insertion into left subtree of right child of .,The rebalancing is performed through four separate rotation algorithms.,Insertions in AVL Tre

14、es,12/26/03,AVL Trees - Lecture 8,17,j,k,X,Y,Z,Consider a valid AVL subtree,AVL Insertion: Outside Case,h,h,h,12/26/03,AVL Trees - Lecture 8,18,j,k,X,Y,Z,Inserting into X destroys the AVL property at node j,AVL Insertion: Outside Case,h,h+1,h,12/26/03,AVL Trees - Lecture 8,19,j,k,X,Y,Z,Do a “right r

15、otation”,AVL Insertion: Outside Case,h,h+1,h,12/26/03,AVL Trees - Lecture 8,20,j,k,X,Y,Z,Do a “right rotation”,Single right rotation,h,h+1,h,12/26/03,AVL Trees - Lecture 8,21,j,k,X,Y,Z,“Right rotation” done! (“Left rotation” is mirrorsymmetric),Outside Case Completed,AVL property has been restored!,

16、h,h+1,h,12/26/03,AVL Trees - Lecture 8,22,j,k,X,Y,Z,AVL Insertion: Inside Case,Consider a valid AVL subtree,h,h,h,12/26/03,AVL Trees - Lecture 8,23,Inserting into Y destroys the AVL property at node j,j,k,X,Y,Z,AVL Insertion: Inside Case,Does “right rotation” restore balance?,h,h+1,h,12/26/03,AVL Tr

17、ees - Lecture 8,24,j,k,X,Y,Z,“Right rotation” does not restore balance now k is out of balance,AVL Insertion: Inside Case,h,h+1,h,12/26/03,AVL Trees - Lecture 8,25,Consider the structure of subtree Y,j,k,X,Y,Z,AVL Insertion: Inside Case,h,h+1,h,12/26/03,AVL Trees - Lecture 8,26,j,k,X,V,Z,W,i,Y = nod

18、e i and subtrees V and W,AVL Insertion: Inside Case,h,h+1,h,h or h-1,12/26/03,AVL Trees - Lecture 8,27,j,k,X,V,Z,W,i,AVL Insertion: Inside Case,We will do a left-right “double rotation” . . .,12/26/03,AVL Trees - Lecture 8,28,j,k,X,V,Z,W,i,Double rotation : first rotation,left rotation complete,12/2

19、6/03,AVL Trees - Lecture 8,29,j,k,X,V,Z,W,i,Double rotation : second rotation,Now do a right rotation,12/26/03,AVL Trees - Lecture 8,30,j,k,X,V,Z,W,i,Double rotation : second rotation,right rotation complete,Balance has been restored,h,h,h or h-1,12/26/03,AVL Trees - Lecture 8,31,Implementation,bala

20、nce (1,0,-1),key,right,left,No need to keep the height; just the difference in height, i.e. the balance factor; this has to be modified on the path of insertion even if you dont perform rotations Once you have performed a rotation (single or double) you wont need to go back up the tree,12/26/03,AVL

21、Trees - Lecture 8,32,Single Rotation,RotateFromRight(n : reference node pointer) p : node pointer; p := n.right; n.right := p.left; p.left := n; n := p ,X,Y,Z,n,You also need to modify the heights or balance factors of n and p,Insert,12/26/03,AVL Trees - Lecture 8,33,Double Rotation,Implement Double

22、 Rotation in two lines.,DoubleRotateFromRight(n : reference node pointer) ? ,X,n,V,W,Z,12/26/03,AVL Trees - Lecture 8,34,Insertion in AVL Trees,Insert at the leaf (as for all BST) only nodes on the path from insertion point to root node have possibly changed in height So after the Insert, go back up

23、 to the root node by node, updating heights If a new balance factor (the difference hleft-hright) is 2 or 2, adjust tree by rotation around the node,12/26/03,AVL Trees - Lecture 8,35,Insert in BST,Insert(T : reference tree pointer, x : element) : integer if T = null thenT := new tree; T.data := x; r

24、eturn 1;/the links to /children are null caseT.data = x : return 0; /Duplicate do nothingT.data x : return Insert(T.left, x);T.data x : return Insert(T.right, x); endcase ,12/26/03,AVL Trees - Lecture 8,36,Insert in AVL trees,Insert(T : reference tree pointer, x : element) : if T = null thenT := new

25、 tree; T.data := x; height := 0; return; caseT.data = x : return ; /Duplicate do nothingT.data x : Insert(T.left, x);if (height(T.left)- height(T.right) = 2)if (T.left.data x ) then /outside caseT = RotatefromLeft (T);else /inside caseT = DoubleRotatefromLeft (T);T.data x : Insert(T.right, x);code s

26、imilar to the left case EndcaseT.height := max(height(T.left),height(T.right) +1;return; ,12/26/03,AVL Trees - Lecture 8,37,Example of Insertions in an AVL Tree,1,0,2,20,10,30,25,0,35,0,Insert 5, 40,12/26/03,AVL Trees - Lecture 8,38,Example of Insertions in an AVL Tree,1,0,2,20,10,30,25,1,35,0,5,0,2

27、0,10,30,25,1,35,5,40,0,0,0,1,2,3,Now Insert 45,12/26/03,AVL Trees - Lecture 8,39,Single rotation (outside case),2,0,3,20,10,30,25,1,35,2,5,0,20,10,30,25,1,40,5,40,0,0,0,1,2,3,45,Imbalance,35,45,0,0,1,Now Insert 34,12/26/03,AVL Trees - Lecture 8,40,Double rotation (inside case),3,0,3,20,10,30,25,1,40

28、,2,5,0,20,10,35,30,1,40,5,45,0,1,2,3,Imbalance,45,0,1,Insertion of 34,35,34,0,0,1,25,34,0,12/26/03,AVL Trees - Lecture 8,41,AVL Tree Deletion,Similar but more complex than insertion Rotations and double rotations needed to rebalance Imbalance may propagate upward so that many rotations may be needed

29、.,12/26/03,AVL Trees - Lecture 8,42,Arguments for AVL trees:Search is O(log N) since AVL trees are always balanced. Insertion and deletions are also O(logn) The height balancing adds no more than a constant factor to the speed of insertion.Arguments against using AVL trees: Difficult to program more

30、 space for balance factor. Asymptotically faster but rebalancing costs time. Most large searches are done in database systems on disk and use other structures (e.g. B-trees). May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).,Pros and Cons of AVL Trees,12/26/03,AVL Trees - Lecture 8,43,Double Rotation Solution,DoubleRotateFromRight(n : reference node pointer) RotateFromLeft(n.right); RotateFromRight(n); ,X,n,V,W,Z,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1