ImageVerifierCode 换一换
格式:PPT , 页数:40 ,大小:382.50KB ,
资源ID:378851      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378851.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Basic Statistical Concepts.ppt)为本站会员(figureissue185)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Basic Statistical Concepts.ppt

1、Basic Statistical Concepts,Donald E. Mercante, Ph.D.Biostatistics School of Public Health L S U - H S C,Population,Sample,Statistics,Parameters,Two Broad Areas of Statistics,Descriptive Statistics- Numerical descriptors- Graphical devices- Tabular displaysInferential Statistics - Hypothesis testing

2、 Confidence intervals - Model building/selection,Descriptive Statistics,When computed for a population of values, numerical descriptors are called ParametersWhen computed for a sample of values, numerical descriptors are called Statistics,Descriptive Statistics,Two important aspects of any populati

3、onMagnitude of the responsesSpread among population members,Descriptive Statistics,Measures of Central Tendency (magnitude)Mean - most widely used- uses all the data- best statistical properties- susceptible to outliersMedian - does not use all the data- resistant to outliers,Descriptive Statistics,

4、Measures of Spread (variability)range - simple to compute- does not use all the datavariance - uses all the data- best statistical properties- measures average distance of values from a reference point,Properties of Statistics,Unbiasedness - On target Minimum variance - Most reliableIf an estimator

5、possesses both properties then it is a MINVUE = MINimum Variance Unbiased EstimatorSample Mean and Variance are UMVUE =Uniformly MINimum Variance Unbiased Estimator,Inferential Statistics,- Hypothesis Testing- Interval Estimation,Hypothesis Testing,Specifying hypotheses:H0: “null” or no effect hypot

6、hesisH1: research or alternative hypothesisNote: Only H0 (null) is tested.,Errors in Hypothesis Testing,Hypothesis Testing,In parametric tests, actual parameter values are specified for H0 and H1.H0: 120,Hypothesis Testing,Another example of explicitly specifying H0 and H1.H0: = 0H1: 0,Hypothesis Te

7、sting,General framework:Specify null & alternative hypothesesSpecify test statisticState rejection rule (RR)Compute test statistic and compare to RRState conclusion,Common Statistical Tests,Common Statistical Tests (cont.),Advanced Topics,P-Values,p = Probability of obtaining a result at least this

8、extreme given the null is true.P-values are probabilities0 p 1Computed from distribution of the test statistic,Rate a proportion, specifically a fraction, where The numerator, c, is included in the denominator:Useful for comparing groups of unequal size Example:,Epidemiological Concepts,Measures of

9、Morbidity:Incidence Rate: # new cases occurring during a given time interval divided by population at risk at the beginning of that period.Prevalence Rate: total # cases at a given time divided by population at risk at that time.,Epidemiological Concepts,Most people think in terms of probability (p)

10、 of an event as a natural way to quantify the chance an event will occur = 0=p=10 = event will certainly not occur1 = event certain to occurBut there are other ways of quantifying the chances that an event will occur.,Epidemiological Concepts,Odds and Odds Ratio:For example, O = 4 means we expect 4

11、times as many occurrences as non-occurrences of an event.In gambling, we say, the odds are 5 to 2. This corresponds to the single number 5/2 = Odds.,Epidemiological Concepts,The relationship between probability & odds,Epidemiological Concepts,Epidemiological Concepts,Odds1 correspond,To probabilitie

12、s0.5,0Odds,Death sentence by race of defendant in 147 trials,Example 1: Odds Ratio,Odds of death sentence = 50/97 = 0.52For Blacks: O = 28/45 = 0.62For Nonblacks: O = 22/52 = 0.42Ratio of Black Odds to Nonblack Odds = 1.47 This is called the Odds Ratio,Example 2: Odds Ratio,Odds ratios are directly

13、related to the parameters of the logit (logistic regression) model.Logistic Regression is a statistical method that models binary (e.g., Yes/No; T/F; Success/Failure) data as a function of one or more explanatory variables.We would like a model that predicts the probability of a success, ie, P(Y=1)

14、using a linear function.,Logistic Regression,Problem: Probabilities are bounded by 0 and 1. But linear functions are inherently unbounded.Solution: Transform P(Y=1) = p to an odds. If we take the log of the odds the lower bound is also removed.Setting this result equal to a linear function of the ex

15、planatory variables gives us the logit model.,Logistic Regression,Logit or Logistic Regression ModelWhere pi is the probability that yi = 1. The expression on the left is called the logit or log odds.,Logistic Regression,Probability of success:Odds Ratio for Each Explanatory Variable:,Logistic Regre

16、ssion,Screening Tests,How do we evaluate the usefulness of such a test?Diagnostics:sensitivityspecificityFalse positive rateFalse negative ratepredictive value positivepredictive value negative,Screening Tests,Screening Tests,Screening Tests,Screening Tests,Interval Estimation,Statistics such as the

17、 sample mean, median, variance, etc., are calledpoint estimates-vary from sample to sample-do not incorporate precision,Interval Estimation,Take as an example the sample mean:X (popn mean) Or the sample variance:S2 2(popn variance),Estimates,Interval Estimation,Recall Example 1, a one-sample t-test

18、on the population mean. The test statistic wasThis can be rewritten to yield:,Interval Estimation,Which can be rearranged to give a,(1-)100% Confidence Interval for :,Form: Estimate Multiple of Std Error of the Est.,Interval Estimation,Example 1: Standing SBPMean = 140.8, s.d. = 9.5, N = 1295% CI for : 140.8 2.201 (9.5/sqrt(12) 140.8 6.036 (134.8, 146.8),

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1