ImageVerifierCode 换一换
格式:PPT , 页数:17 ,大小:356.50KB ,
资源ID:378859      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378859.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Basis Expansions and Regularization.ppt)为本站会员(jobexamine331)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Basis Expansions and Regularization.ppt

1、Basis Expansions and Regularization,Based on Chapter 5 of Hastie, Tibshirani and Friedman (Prepared by David Madigan),Basis Expansions for Linear Models,Here the hms might be:,hm(X)=Xm, m=1,p recovers the original model hm(X)=Xj2 or hm(X)= Xj Xk hm(X)=I(LmXk Um),“knots”,Regression Splines,Bottom lef

2、t panel uses:,Number of parameters = (3 regions) X (2 params per region)- (2 knots X 1 constraint per knot)= 4,cubic spline,Cubic Spline,Number of parameters = (3 regions) X (4 params per region)- (2 knots X 3 constraints per knot)= 6 Knot discontinuity essentially invisible to the human eye,continu

3、ous first and second derivatives,Natural Cubic Spline,Adds a further constraint that the fitted function is linear beyond the boundary knotsA natural cubic spline model with K knots is represented by K basis functions:,Each of these basis functions has zero 2nd and 3rd derivative outside the boundar

4、y knots,Natural Cubic Spline Models,Can use these ideas in, for example, regression models.For example, if you use 4 knots and hence 4 basis functions per predictor variable, then simply fit logistic regression model with four times the number of predictor variables,Smoothing Splines,Consider this p

5、roblem: among all functions f(x) with two continuous derivatives, find the one that minimizes the penalized residual sum of squares:,smoothing parameter,=0 : f can be any function that interpolates the data =infinity : least squares line,Seems like there will be N features and presumably overfitting

6、 of the data. But, the smoothing term shrinks the model towards the linear fitThis is a generalized ridge regression Can show that where K does not depend on ,Smoothing Splines,Theorem: The unique minimizer of this penalized RSS is a natural cubic spline with knots at the unique values of xi , i=1,N

7、,Nonparametric Logistic Regression,Consider logistic regression with a single x:and a penalized log-likelihood criterion:,Again can show that the optimal f is a natural spline with knots at the datapointCan use Newton-Raphson to do the fitting.,Thin-Plate Splines,The discussion up to this point has been one-dimensional. The higher-dimensional analogue of smoothing splines are “thin-plate splines.” In 2-D, instead of minimizing:minimize:,Thin-Plate Splines,The solution has the form:,a type of “radial basis function”,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1