ImageVerifierCode 换一换
格式:PPT , 页数:37 ,大小:1.70MB ,
资源ID:378862      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378862.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Batch Estimation, Solving Sparse Linear Systems in .ppt)为本站会员(syndromehi216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Batch Estimation, Solving Sparse Linear Systems in .ppt

1、Batch Estimation, Solving Sparse Linear Systems in Information and Square-Root Form,June 12, 2017 Benjamin Skikos,Outline,Information & Square Root Filters Square Root SAM Batch Approach Variable ordering and structure of SLAM Incremental Approach 1 Bayes Tree Incremental Approach 2,Information Form

2、,Extended Information Filter,EKF represents posterior as mean and covarianceEIF represents posterior as information matrix and information vector,Information Filter Motion Update,From the EKF,Information Filter Measurement Updates,Square Root Filter,Historically motivated by limited computer precisi

3、on Factorize either covariance or information and rederive propagation and update equations Condition number is halved= ,Smoothing,In this context smoothing will be the “full SLAM problem”; estimate the robots trajectory and surroundings given all available measurements. For factor graphs, that mean

4、s optimize over all the unknown states Recall, factors encode the joint probability over all unknowns,Factor Graph Optimization,Recall, to solve a factor graph it is converted to LLS. From here on out it is all about crunching matricesA is the stack of all factor Jacobians (Measurement Jacobian) B i

5、s the stack of all measurement/process model error,Information Form - SAM,The solution is found by solving the normal equationsATA is the information matrix or Hessian Efficiently solved by factorization Batch problem now solved,Ex: Cholesky Factorization,In this variant, R is an upper triangular ma

6、trix The sparseness of R and I affects how long the factorization takes Worst case fully dense: n3/3 The sparseness of R changes with variable ordering in the information matrix,Matrix Structure,A corresponds to the factor graph I corresponds to the adjacency matrix of the Markov Random Field. Each

7、square root factor is associated with a triangulated (or chordal) graph whose elimination corresponds with the Bayes Net,Markov Random Field,Undirected graph with Markov properties: Pairwise: Any two non-adjacent variables are conditionally independent given all other variables Local Markov: A varia

8、ble is conditionally independent of all other variables given its neighbors Global Markov: Any two subsets of variables are conditionally independent given a separating subsethttps:/en.wikipedia.org/wiki/Markov_random_field,Factor Graph to Markov Random Field,Factors are abstracted out MRF edges rep

9、resent dependencies between random variables Like factor graphs, encode joint probability,Factor Graph To a Bayes Net,MRF to Bayes Net,Additional Conditionals,Variable Ordering,MRF,ColAMD Elimination Ordering,Landmarks, Then Poses,Finding the optimal ordering is NP-Complete Fewer edges means faster

10、back-substitution,Online SAM,Most new measurements only directly affect a small subset of the state vector Need a way to add state elements incrementally without redoing work,Incremental Approach - ISAM,Consider the QR factorization of A substituted for A,Givens Rotations,Jacobian Update, = Incremen

11、tally updating R is just more Givens rotations,Uncertainty and Data Association,Uncertainty of the state is required to perform certain common tasksIn order to match measurements to landmarks, maximum likelihood can be used: This requires computing the Mahalanobis distance between measured position

12、and each landmark Need covariance on state estimate,Marginal Covariance,The covariance of a subset of state variables may be all that is required,Marginal Recovery,Assuming the marginal of interest includes the rightmost variables,Last Column of Y,Diagonal Entries,Can recover full covariance matrixB

13、ack-substitutions,Exact Vs Approximate,Cliques,The cliques of a graph are subsets of fully connected vertices,Clique Tree,The square root factor is associated with a chordal graph,Bayes Net Again,Recall the Bayes Net,Bayes Tree,A factorization of the Bayes Net Encodes factored probability density Cl

14、iques discovered via Maximum Cardinality Search,X2, X3,L1,X1 : X2,L2 : X3,Incremental Approach - ISAM2,Bayes Tree representation can be updated incrementally,Variable Ordering,During the increment, the elimination of the intermediate factor graph can be reordered,Non-Linear Factors and Partial Updat

15、es,When incorporating non-linear factors, a Taylor expansion is typically used The process of updating Jacobians at new linearization points costs time Only update Jacobians if needed Similarly, defer updating states that dont change much,Complexity,Worst case is O(n3) for general matrix factorizati

16、on Planar mapping with restricted sensor range is O(n1.5) Incremental methods can often do better most of the time,Questions?,But What About Hard Deadlines?,Worst-case runtime is grows as the number of variables increase If constant time is required, need another solution,References,Course Reference

17、s: K. Wu, A. Ahmed, G. A. Georgiou, and S. I. Roumeliotis, “A square root inverse filter for efficient vision-aided inertial navigation on mobile devices.,” in Robotics: Science and Systems, 2015. M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smoothing and mapping,” IEEE Transactions

18、 on Robotics, vol. 24, no. 6, pp. 13651378, 2008. M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “isam2: Incremental smoothing and mapping using the bayes tree,” The International Journal of Robotics Research, vol. 31, no. 2, pp. 216235, 2012. Additional References: J.

19、Lambers, “The QR Factorization” Lecture Notes. Retrieved from http:/www.math.usm.edu/lambers/mat610/sum10/lecture9.pdf S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, H. Durrant-Whyte. “SEIF”. Retrieved from http:/robots.stanford.edu/papers/thrun.seif.pdf F. Dellaert, M, Kaess. “Square Root SAM:

20、Simultaneous Localization and Mapping via Square Root Information Smoothing” in The International Journal of Robotics Research, vol. 25, no. 12, pp. 1181-1203, 2006 M. Salzmann, “Some Aspects of Kalman Filtering” University of New Brunswick, August 1988All pictures taken from these sources and wikipedia,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1