ImageVerifierCode 换一换
格式:PPT , 页数:48 ,大小:441KB ,
资源ID:378878      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378878.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(BDD vs. Constraint Based Model Checking- An Experimental .ppt)为本站会员(inwarn120)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

BDD vs. Constraint Based Model Checking- An Experimental .ppt

1、BDD vs. Constraint Based Model Checking: An Experimental Evaluation for Asynchronous Concurrent Systems,Tevfik Bultan Department of Computer Science University of California, Santa Barbara bultancs.ucsb.edu http:/www.cs.ucsb.edu/bultan/,Outline,Concurrency problems Symbolic model checking Functional

2、ity required for symbolic model checking BDD representation Constraint representation Experimental results Related work Conclusions,Program: Bakery Data Variables: a, b: positive integer Control Variables: pc1, pc2: T, W, C Initial Condition: a=b=0 & pc1=T1 & pc2=T2 Events: eT1: pc1=T & pc1=W & a=b+

3、1 eW1: pc1=W & (ab | b=0) & pc1=C eC1: pc1=C & pc1=T & a=0eT2: pc2=T & pc2=W & b=a+1 eW2: pc2=W & (ba | a=0) & pc2=C eC2: pc2=C & pc2=T & b=0BAKERY: AG(!(pc1=c & pc2=C),Program: Barber Data Variables: cinchair,cleave,bavail,bbusy,bdone: positive integer Control Variables: pc1,pc2,pc3: 1,2 Initial Co

4、ndition: cinchair=cleave=bavail=bbusy=bdone=0 & pc1=pc2=pc3=1 Events: eHairCut1: pc1=1 & pc1=2 & cinchairbavail & cinchair=cinchair+1 eHairCut2: pc1=2 & pc1=1 & cleavebdone & cleave=cleave+1 eNext1: pc2=1 & pc2=2 & bavail=bavail+1 eNext2: pc2=2 & pc2=1 & bbusycinchair & bbusy=bbusy+1 eFinish1: pc3=1

5、 & pc3=2 & bdonebbusy & bdone=bdone+1 eFinish2: pc3=2 & pc3=1 & bdone=cleave,BARBER: AG(cinchair =cleave & bavail=bbusy=bdone& cinchair=cleave & bavail=bbusy=bdone)BARBER-2: AG(cinchair=bavail & bbusy=cinchair)BARBER-3: AG(cleave=bdone),Program:Readers-Writers Data Variables: nr, nw: positive intege

6、r Initial Condition: nr=nw=0 Events: eReaderEnter: nw=0 & nr=nr+1 eReaderExit: nr0 & nr=nr-1eWriterEnter: nr=0 & nw= 0 & nw=nw+1 eWriterExit: nw0 & nw=nw-1READERS-WRITERS: AG(nr=0 | nw=0) & nw=1),Program: Bounded-Buffer Parameterized Constant: size: positive integer Data Variables: available, produc

7、ed, consumed: positive integer Initial Condition: produced=consumed=0& available = size Events: eProduce: 0available & produced=produced+1& available=available-1 eConsume: availablesize & consumed=consumed+1& available=available+1,BOUNDED-BUFFER: AG(produced-consumed=size-available& 0=available=size

8、)BOUNDED-BUFFER-1: AG(produced-consumed=size-available)BOUNDED-BUFFER-2: AG(0=available=size)BOUNDED-BUFFER-3: AG(0=produced-consumed=size),Program: Circular-Queue Parameterized Constant: size: positive integer Data Variables: occupied,head,tail,produced, consumed : positive integer Initial Conditio

9、n:occupied=head=tail=produced=consumed=0 Events: eProduce: occupied0 & occupied=occupied-1& consumed=consumed+1 & (head=size & head=0| headsize & head=head+1),CIRCULAR-QUEUE: AG(0=produced-consumed=size& produced-consumed=occupied)CIRCULAR-QUEUE-1: AG(0=produced-consumed=size)CIRCULAR-QUEUE-2: AG(pr

10、oduced-consumed=occupied),Model Checking,Given a program and a temporal property p:Either show that all the initial states satisfy the temporal property p set of initial states truth set of pOr find an initial state which does not satisfy the property p a state set of initial states truth set of p,T

11、emporal Properties Fixpoints,EF p p (EX p) EX (EX p) ,1,3,2,Temporal Properties Fixpoints,Note that AG p EF( p )Other temporal operators can also be represented as fixpoints AF p , EG p , p AU q , p EU q,Tools Required for Model Checking,Basic set operations intersection, union, set difference to ha

12、ndle Equivalence Checking to check if the fixpoint is reached Relational image computation for precondition operation EX,Functionality of a Symbolic Representation,Symbolic And(Symbolic,Symbolic) Symbolic Or(Symbolic,Symbolic) Symbolic Not(Symbolic) Boolean Equivalent(Symbolic,Symbolic) Symbolic EX(

13、Symbolic),BDDs,Efficient representation for boolean functions Disjunction, conjunction complexity: at most quadratic Negation complexity: constant Equivalence checking complexity: constant or linear Image computation complexity: can be exponential,BDD encoding for Integer Variables,Systems with boun

14、ded integer variables can be represented using BDDs Use a binary encoding represent integer x as x0x1x2. xk where x0, x1, x2, . , xk are binary variablesYou have to be careful about the variable ordering!,Integers in SMV,SMV represents integers using a binary encodingIn the BDD variable ordering cur

15、rent and next state bits of an integer variable are interleaved good for x = xBits of different variables are not interleaved What happens when we have x = y ?,x2 x2 x1 x1x0x0 y2 y2 y1 y1 y0 y0,We have to remember every x bit until this point for x = y,William Chans Ordering,Using a preprocessor con

16、verts integer variables to boolean variables Interleaves bits of all integer variables in the BDD ordering Results with much better performance for systems with integer variables,Linear Arithmetic Constraints,ConstraintsConstraint representation, ai xi = c,1 i n, ai xi c,1 i n, constraintkl,1 k h,1

17、l m,Linear Arithmetic Constraints,Can be used to represent unbounded integers Disjunction complexity: linear Conjunction complexity: quadratic Negation complexity: can be exponential Equivalence checking complexity: can be exponential Image computation complexity: can be exponential,Image Computatio

18、n in Omega Library,Extension of Fourier-Motzkin variable elimination for real variables Eliminating one variable from a conjunction of constraints may double the number of constraints Integer variables complicate the problem even further,Fourier-Motzkin Variable Elimination,Given two constraints bz

19、and az we havea abz bWe can eliminate z as:z . a abz b if and only if a b Every upper and lower bound pair can generate a separate constraint, the number of constraints can double for each eliminated variable,real shadow,Integers are More Complicated,If z is integer z . a abz b if a + (a - 1)(b - 1)

20、 b Remaining solutions can be characterized using periodicity constraints in the following form:z . + i = bz,dark shadow,y . 0 3y x 7 1 x 2y 5,Consider the constraints:,2x 6y,We get the following bounds for y:,6y 2x + 14,6y 3x - 3,3x - 15 6y,When we combine 2 lower bounds with 2 upper bounds we get

21、four constraints:,0 14 , 3 x , x 29 , 0 12,Result is: 3 x 29,2y x 1,x 5 2y,3y x + 7,x 3y,dark shadow,real shadow,29,3,y,x,Systems with Bounded Integer Variables,BDDs and constraint representations are both applicableWhich one is better?,Experiments,Intel Pentium PC (500MHz, 128MByte main memory) Thr

22、ee approaches are compared SMV SMV with Chans interleaved variable ordering Omega library model checker,BAKERY: AG(!(pc1=c & pc2=C),BARBER: AG(cinchair =cleave & bavail=bbusy=bdone& cinchair=cleave & bavail=bbusy=bdone) BARBER-2: AG(cinchair=bavail & bbusy=cinchair) BARBER-3: AG(cleave=bdone),READER

23、S-WRITERS: AG(nr=0 | nw=0) & nw=1),BOUNDED-BUFFER: AG(produced-consumed=size-available& 0=available=size) BOUNDED-BUFFER-1: AG(produced-consumed=size-available) BOUNDED-BUFFER-2: AG(0=available=size) BOUNDED-BUFFER-3: AG(0=produced-consumed=size),CIRCULAR-QUEUE: AG(0=produced-consumed=size& produced

24、consumed=occupied) CIRCULAR-QUEUE-1: AG(0=produced-consumed=size) CIRCULAR-QUEUE-2: AG(produced-consumed=occupied),SMV (interleaved),Omega,Each integer variable is restricted to 0 i 1024,SMV (interleaved),Omega,Each integer variable is restricted to 0 i 1024,Size of the buffer is restricted to 0 si

25、ze 16,Constraint-Based Verification: Not a New Idea,Cooper 71: used a decision procedure for Presburger arithmetic to verify sequential programs represented in a block form Cousot and Halbwachs 78: used real arithmetic constraints to discover invariants of sequential programs,Constraint-Based Verifi

26、cation:,Halbwachs 93: constraint based delay analysis in synchronous programs Halbwachs et al. 94: verification of linear hybrid systems using constraint representations Alur et al. 96: HyTech, a model checker for hybrid systems,Constraint-Based Verification,Boigelot and Wolper 94: symbolic verifica

27、tion with periodic sets Bultan et al. 97, 99: used Presburger arithmetic constraints for model checking concurrent systems Delzanno and Podelski 99: built a model checker using constraint logic programming framework,BDD-Based Verification,Bryant 86: Reduced ordered BDDs Coudert et al. 90: BDD-based

28、verification Burch et al. 90: Symbolic model checking McMillan 93: SMV,Combining BDDs and Constraints,Chan et al. 97: combining BDD representation with a constraint solver (it can handle nonlinear constraints but the transition system is restricted) Bultan et al. 98, 00: combining different symbolic

29、 representations in one model checker (combined BDDs and linear arithmetic constraints in a disjunctive form),Automata-Based Representations,Klarlund et al. 95: MONA, an automata manipulation tool for verification Wolper and Boigelot: verification using automata as a symbolic representation Kukula e

30、t al. 98: application of automata based verification to hardware verification,Automata vs. Constraint Representation,Kukula et al. 98: comparison of automata and constraint-based verification comparison based on reachability analysis no clear winner on some cases automata based approach seems to sho

31、w asymptotic advantage this could be due to inefficient encoding of booleans in constraint representation,Conclusions,Constraint-based representations can be more efficient for integer variables with large domains BDD-based model checking is more robust Constraint-based model checkers can handle infinite state systems Constraint-based model checking suffers from inefficient representation of variables with small domains I believe there is room for improvement for constraint-based model checking techniques,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1