ImageVerifierCode 换一换
格式:PPT , 页数:28 ,大小:1.03MB ,
资源ID:378881      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378881.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Beam-Width Prediction for Efficient Context-Free Parsing.ppt)为本站会员(Iclinic170)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Beam-Width Prediction for Efficient Context-Free Parsing.ppt

1、Beam-Width Prediction for Efficient Context-Free Parsing,Nathan Bodenstab, Aaron Dunlop, Keith Hall, Brian Roark,June 2011,OHSU Beam-Search Parser (BUBS),2,Standard bottom-up CYK Beam-search per chart cell Only “best” are retained,Ranking, Prioritization, and FOMs,f() = g() + h() Figure of Merit Car

2、aballo and Charniak (1997) A* search Klein and Manning (2003) Pauls and Klein (2010) Other Turrian (2007) Huang (2008) Apply to beam-search,3,Beam-Width Prediction,Traditional beam-search uses constant beam-width Two definitions of beam-width: Number of local competitors to retain (n-best) Score dif

3、ference from best entry Advantages Heavy pruning compared to CYK Minimal sorting compared to global agenda Disadvantages No global pruning all chart cells treated equal Conservative to keep outliers within beam,4,5,Beam-Width Prediction,How often is gold edge ranked in top N per chart cell Exhaustiv

4、ely parse section 22 + Berkeley latent variable grammar,Gold rank = N,Cumulative Gold Edges,6,Beam-Width Prediction,How often is gold edge ranked in top N per chart cell Exhaustively parse section 22 + Berkeley latent variable grammar,Gold rank = N,Cumulative Gold Edges,7,Beam-Width Prediction,Beam-

5、search + C&C Boundary ranking: How often is gold edge ranked in top N per chart cell:,Gold rank = N,Cumulative Gold Edges,To maintain baseline accuracy, beam-width must be set to 15 with C&C Boundary ranking (and 50 using only inside score),8,Beam-Width Prediction,Beam-search + C&C Boundary ranking:

6、 How often is gold edge ranked in top N per chart cell:,Gold rank = N,Cumulative Gold Edges,To maintain baseline accuracy, beam-width must be set to 15 with C&C Boundary ranking (and 50 using only inside score),Over 70% of gold edges are already ranked first in the local agenda14 of 15 edges in thes

7、e cells are unnecessaryWe can do much better than a constant beam-width,Beam-Width Prediction,Method: Train an averaged perceptron (Collins, 2002) to predict the optimal beam-width per chart cell Map each chart cell in sentence S spanning words wi wj to a feature vector representation:x: Lexical and

8、 POS unigrams and bigrams, relative and absolute span y:1 if gold rank k, 0 otherwise (no gold edge has rank of -1) Minimize the loss:H is the unit step function,9,k,k,Beam-Width Prediction,Method: Use a discriminative classifier to predict the optimal beam-width per chart cell Minimize the loss:L i

9、s the asymmetric loss function:If beam-width is too large, tolerable efficiency loss If beam-width is too small, high risk to accuracy Lambda set to 102 in all experiments,10,k,11,Beam-Width Prediction,Special case: Predict if chart cell is open or closed to multi-word constituents,12,Beam-Width Pre

10、diction,A “closed” chart cell may need to be partially open Binarized or dotted-rule parsing creates new “factored” productions:,13,Beam-Width Prediction,Method 1: Constituent Closure,14,Beam-Width Prediction,Constituent Closure is a per-cell generalization of Roark & Hollingshead (2008) O(n2) class

11、ifications instead of O(n),15,Beam-Width Prediction,Method 2: Complete Closure,16,Beam-Width Prediction,Method 3: Beam-Width Prediction,17,Beam-Width Prediction,Method 3: Beam-Width PredictionUse multiple binary classifiers instead of regression (better performance) Local beam-width taken from class

12、ifier with smallest beam-width prediction Best performance with four binary classifiers: 0, 1, 2, 4 97% of positive examples have beam-width = 4 Dont need a classifier for every possible beam-width value between 0 and global maximum (15 in our case),18,Beam-Width Prediction,19,Beam-Width Prediction,

13、1.00.80.60.40.20.0,20,Beam-Width Prediction,Section 22 development set resultsDecoding time is seconds per sentence averaged over all sentences in Section 22Parsing with Berkeley latent variable grammar (4.3 million productions),21,Beam-Width Prediction,22,Beam-Width Prediction,Beam-Width Prediction

14、,23,24,Beam-Width Prediction,Section 23 test results Only MaxRule is marginalizing over latent variables and performing non-Viterbi decoding,Thanks.,25,26,Beam-Width Prediction,27,FOM Details,C&C FOM Details FOM(NT) = Outsideleft * Inside * Outsideright Inside = Accumulated grammar score Outsideleft = MaxPOS POS forward prob * POS-to-NT transition prob Outsideright = MaxPOS NT-to-POS transition prob * POS bkwd prob ,28,FOM Details,C&C FOM Details,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1