ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:1.15MB ,
资源ID:378932      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378932.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Bias Correction Methods Adjusting Moments.ppt)为本站会员(eventdump275)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Bias Correction Methods Adjusting Moments.ppt

1、Bias Correction Methods Adjusting Moments,Bo Cui*, Zoltan Toth Yuejian Zhu, Dingchen Hou*, and Richard Wobus * Environmental Modeling Center, NCEP/NWS * SAIC at Environmental Modeling Center, NCEP/NWS,Acknowledgements,Zoltan Toth Yuejian ZhuDingchen HouRichard Wobus,Tasks & GoalsBias-Correction Algo

2、rithm: Adjusting MomentsExperimental DesignEnsemble Forecast VerificationFuture Plans,Outline,Ensemble Postprocessing,NWP models, ensemble formation are imperfect Deficiencies due to various problems in NWP models Systematic errors in analysis induced by observations and model related Ensemble forma

3、tion Not appropriate initial spread Lack of representation of model related uncertainty Limited ensemble size Known model/ensemble problems addressed at their sources, no “perfect” solution exists Systematic errors remain and cause biases in 1st , 2nd moments of ensemble distribution,Tasks & Goals,T

4、asks Develop and implement a statistical post-processing scheme to reduce the biases in ensemble forecasts (height, temperature and other variables) Correct both the 1st and 2nd moments of the ensembleGoals Biased-corrected forecasts will have reduced or no bias with respect to the verifying analysi

5、s fields, given on the model grid,FIRST MOMENT B = DIFFERENCE BETWEEN Ensemble mean forecast and Verifying analysis,SECOND MOMENT R = RATIO BETWEEN RMS Error of Ensemble mean and Ensemble Spread,Moment Adjustment,Bias Assessment,Bias Correction,1st moment = Ensemble mean B,2nd moment = Ensemble mean

6、 B (Ensemble Forecast Ensemble Mean) * R,Implementation Facts,Bias assessment carried out separately at each forecast lead time individual grid point ensemble mean, GFS and ensemble control forecasts Bias correction tests - applied on all ensemble member forecasts for 00Z initial cycle only 2.5x2.5

7、lat/lon resolution 500 mb height, 850 mb temperature,Adaptive methods: Consider most recent past data with decaying averaging Use data from surrounding grid-points (with a Gaussian weighting function) Use large (climatological) sample data if available and forecast system is stable Adjust temporal/s

8、patial sampling domain to optimize performance Construct cumulative frequency distribution to match that of observed, QPF calibration (Yuejian Zhu) Regime dependent method (Jun Du) use correlation coefficients between circulation field today vs. that in recent past to determine weights given to data

9、 in estimating bias,Alternatives or Refinements of Bias-Correction Algorithm,Experimental Design,Implementation of decaying averaging for 1st moment bias,decaying averaging mean error = (1-w) * prior t.m.e + w * (f a),T0-46 day T0-16 day T0 day,a) Prior estimate to startup procedure: choose T0 as cu

10、rrent date (00Z), calculate the time mean errors between T-46 and T-16 day. b) Update: the prior estimate of the average state is multiplied by a factor 1-w (1). Then, most recent verification error (f - a) is added to the decaying average for each lead time with a weight of w. c) Cycling: repeat st

11、ep (b) every day.Three experiments with w of 1%, 2% and 10%,Experimental Design,Centered running mean error test for 1st moment bias,T0-15 day T0 day T0+15 day,Define +/- 15 day time average as bias. Use bias estimate (with dependent data) as “optimal” benchmark.Implementation: Four experiments: opt

12、imal test, three decaying averaging experiments (1%, 2% and 10% weight) 8-month period for these experiments (Spring and Summer 2004 ),OPT,W=1%,W=2%,W=10%,Temporal Cross Section: 500 mb Height Time Mean Error (40 N, 95 W, Jan. to Aug. 2004),May 22,Jun. 22,Jun. 22,Jun. 11,May 22,May 22,May 22,Tempora

13、l Cross Section: 850 mb Temp. Time Mean Error (40 N, 95 W, Jan. to Aug. 2004),OPT,W=1%,W=2%,W=10%,May 1,Jun. 2,Jun. 2,May 1,May 1,May 1,May 10,Ensemble Forecasts Verification,Verification of ensemble mean 500 mb height and 850 mb temperature Verification domains NH, SH and Tropics Verification data

14、set GFS final analysis Verification scores AC=pattern anomaly correlation coefficient RMS=root mean square error of ensemble mean ROC= relative operating characteristics RPSS=ranked probability skill score,AC,RMS,RMS error slightly reduced for first several days,3 bias-corrected ensembles with decay

15、ing average: AC scores slightly improved for week 1,AC and RMS 500 mb Height, Summer 2004,2% weight experiment improves performance over NH, and slightly over SH up to week 210% weight experiments performance improved over Tropics,NH,SH,TR,ROC: 500 mb Height, Summer 2004,NH,SH,TR,ROC: 500 mb Height,

16、 Spring 2004,NH and SH: ROC with some weight improved for most lead time Tropics: ROC improved at all leads indicting bias much reduced for sub-regions. 10% weight experiment has a better performance,2% weight experiment improve performance over NH, and slightly over SH as well10% weight experiment

17、improves performance over Tropics, especially for week 2,RPSS: 500 mb Height, Summer 2004,NH,SH,TR,Preliminary Results,In general, the time mean errors of 500 mb height increase with forecast lead time. The time mean errors growth of 500mb height with forecast lead time is nearly linear in some case

18、s. What determines linearity? The time mean error difference between 1% and 2% weight experiments is small. The 10% weight experiment has higher frequency details compared to the 1% and 2% experiments (better for short range?).The centred running mean error test (OPT) shows potential for significant

19、 improvement in the forecast of both 500 mb height and 850 mb temperature in term of all verification scores, compared to the raw ensembles.,Preliminary Results,For days 1 through 6, the AC scores for the raw ensemble and three bias corrected ensembles with decaying averaging are relatively close to

20、 each other on average. With some weights, AC and RMS performance can be improved. The 2% ensemble show large improvements of ROC, RPSS and BSS score over the North and South Hemisphere. The improvement of these scores in summer is more significant than in spring. On the other hand, the choice of 10

21、% weight works better for Tropics compared to 1% and 2%. Use different weights for Tropics?The decaying averaging approach to improve the NCEPs global ensemble forecast system seems promising. Problems with estimating bias for longer lead time with short sample.,Future Plans,Test 1st moment bias-cor

22、rection algorithm on longer period (four seasons, 5 years) for tuning. Start research on the 2nd moment calibration.Test refinements of bias correction algorithm listed before. Run 4 cycles per day, adding 06Z 12Z and18Z forecasts, to provide more timely information and increase sample size. Use dat

23、a with 1x1 lat/lon resolution. Add new ensemble forecast variables such as 2m temperature, U,V, cumulative frequency distribution for forecast QPF. Consider other methods and/or use of larger sample especially for longer lead times.,Refinements of Bias-Correction Algorithm,Details: Decaying averagin

24、g Use recent verification statistics in the calibration process, accumulated in a decaying averaging sense Achieved by using a recursive averaging procedure (Kalman Filtering),Toth, Z., and Y. Zhu, 2001,6.6%,3.3%,1.6%,Centered Running Mean Error: Summer 2004 Latitudinal Cross Section (95 W) Longitudinal Cross Section (40 N),z500,z500,T850,T850,40N,40N,95W,95W,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1