ImageVerifierCode 换一换
格式:PPT , 页数:45 ,大小:1.51MB ,
资源ID:378944      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378944.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Binary Image Proc- week 2.ppt)为本站会员(赵齐羽)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Binary Image Proc- week 2.ppt

1、Stockman CSE803 Fall 2008,1,Binary Image Proc: week 2,Getting a binary image Connected components extraction Morphological filtering Extracting numerical features from regions,Stockman CSE803 Fall 2008,2,Quick look at thresholding,Separate objects from background. 2 class or many class problem? How

2、to do it? Discuss methods later.,Stockman CSE803 Fall 2008,3,Cherry image shows 3 regions,Background is black Healthy cherry is bright Bruise is medium dark Histogram shows two cherry regions (black background has been removed),Use this gray value to separate,Stockman CSE803 Fall 2008,4,Choosing a t

3、hreshold,Common to find the deepest valley between two modes of bimodal histogram Or, can level-slice using the intensities values a and b that bracket the mode of the desired objects Can fit two or more Gaussian curves to the histogram Can do optimization on above (Ohta et al),Stockman CSE803 Fall

4、2008,5,Connected components,Assume thresholding obtained binary image Aggregate pixels of each object 2 different program controls Different uses of data structures Related to paint/search algs Compute features from each object region,Stockman CSE803 Fall 2008,6,Notes on Binary Image Proc,Connected

5、Components Algorithms Separate objects from background Aggregate pixels for each object Compute features for each object Different ways of program control Different uses of data structures Related to paint/search algs,Stockman CSE803 Fall 2008,7,Example red blood cell image,Many blood cells are sepa

6、rate objects Many touch bad! Salt and pepper noise from thresholding How useable is this data?,Stockman CSE803 Fall 2008,8,Cleaning up thresholding results,Can delete object pixels on boundary to better separate parts. Can fill small holes Can delete tiny objects (last 2 are “salt-and-pepper” noise)

7、,Stockman CSE803 Fall 2008,9,Removing salt-and-pepper,Change pixels all of whose neighbors are different (coercion!): see hole filled at right Delete objects that are tiny relative to targets: see some islands removed at right,Stockman CSE803 Fall 2008,10,Simple morphological cleanup,Can be done jus

8、t after thresholding- remove salt and pepper Can be done after connected components are extracted- discard regions that are too small or too large to be the target,Stockman CSE803 Fall 2008,11,CC analysis of red blood cells,63 separate objects detected Single cells have area about 50 Noise spots Gob

9、s of cells,Stockman CSE803 Fall 2008,12,More control of imaging,More uniform objects More uniform background Thresholding works Objects actually separated,Stockman CSE803 Fall 2008,13,Results of “pacmen” analysis,15 objects detected Location known Area known 3 distinct clusters of 5 values of area;

10、85, 145, 293,Stockman CSE803 Fall 2008,14,Results of “coloring” objects,Each object is a connected set of pixels Object label is “color” How is this done?,Stockman CSE803 Fall 2008,15,Extracting components: Alg A,Collect connected foreground pixels into separate objects label pixels with same color

11、A) collect by “random access” of pixels using “paint” or “fill” algorithm,Stockman CSE803 Fall 2008,16,paint/fill algorithm,Obj region must be bounded by background Start at any pixel r,c inside obj Recursively color neighbors,Stockman CSE803 Fall 2008,17,Events of paint/fill algorithm,PP denotes “p

12、rocessing point” If PP outside image, return to prior PP If PP already labeled, return to prior PP If PP is backgr. pixel, return to prior PP If PP is unlabeled obj pixel, then1) label PP with current color code2) recursively label neighbors N1, , N8(or N1, , N4),Stockman CSE803 Fall 2008,18,Recursi

13、ve Paint/Fill Alg: 1 region,Color closed boundary with L Choose pixel r,c inside boundary Call FILL,FILL ( I, r, c, L)If r,c is out, returnIf Ir,c = L, returnIr,c L / color itFor all neighbors rn,cnFILL(I, rn, cn, L),Stockman CSE803 Fall 2008,19,Connected components using recursive Paint/Fill,Raster

14、 scan until object pixel found Assign new color for new object Search through all connected neighbors until the entire object is labeled Return to the raster scan to search for another object pixel,Stockman CSE803 Fall 2008,20,Extracting 5 objects,Stockman CSE803 Fall 2008,21,Outside material to cov

15、er,Look at C+ functions for raster scanning and pixel “propagation” Study related fill algorithm Discuss how the recursion works Prove that all pixels connected to the start pixel must be colored the same,Stockman CSE803 Fall 2008,22,Alg B: raster scan control,Visit each image pixel once, going by r

16、ow and then column. Propagate color to neighbors below and to the right. Keep track of merging colors.,Stockman CSE803 Fall 2008,23,Raster scanning control,Stockman CSE803 Fall 2008,24,Events controlled by neighbors,If all Ni background, then PP gets new color code If all Ni same color L, then PP ge

17、ts L If Ni != Nj, then take smallest code and “make” all same See Ch 3.4 of S&S,Stockman CSE803 Fall 2008,25,Merging connecting regions,Detect and record merges while raster scanning. Use equivalence table to recode,Stockman CSE803 Fall 2008,26,alg A versus alg B,Visits pixels more than once Needs f

18、ull image Recursion or stacking slower than B No need to recolor Can compute features on the fly Can quit if search object found (tracking?),“visits” each pixel once Needs only 2 rows of image at a time Need to merge colors and region features when regions merge Typically faster Not suited for heuri

19、stic start pixel,Stockman CSE803 Fall 2008,27,Outside material,More examples of raster scanning Union-find algorithm and parent table Computing features from labeled object region More on recursion and C+,Stockman CSE803 Fall 2008,28,Computing features of regions,Can postprocess results of CC alg. O

20、r, can compute as pixels are aggregated,Stockman CSE803 Fall 2008,29,Area and centroid,Stockman CSE803 Fall 2008,30,Second moments,These are invariant to object location in the image.,Stockman CSE803 Fall 2008,31,Contrast second moments,For the letter I Versus the letter O Versus the underline _,r,c

21、,Stockman CSE803 Fall 2008,32,Perimeter pixels and length,Stockman CSE803 Fall 2008,33,Circularity or elongation,Stockman CSE803 Fall 2008,34,Circularity as variance of “radius”,Stockman CSE803 Fall 2008,35,Radial mass transform,for each radius r, accumulate the mass at distance r from the centroid

22、(rotation and translation invariant)can iterate over bounding box and for each pixel, compute a rounded r and increment histogram of mass Hr,Stockman CSE803 Fall 2008,36,Interest point detection,Centroids of regions can be interesting points for analysis and matching.What do we do if regions are dif

23、ficult to extract?We might transform an image neighborhood into a feature vector, and then classify as “interesting” vs “not”.,Stockman CSE803 Fall 2008,37,Slice of spine MRI and interesting points selected by RMT & SVM,Stockman CSE803 Fall 2008,38,3D microvolumes from Argonne high energy sensor: 1

24、micron voxels,Ram CAT slice of a bee stinger (left) versus segmented slice (right). Each voxel is about 2 microns per side.,Stockman CSE803 Fall 2008,39,Scanning technique used,CCD camera material sample X-raysscintillator,Pin head,rotate,X-rays partly absorbed by sample; excite scintillator produci

25、ng image in the camera; rotate sample a few degrees and produce another image; 3D reconstruction using CT,Stockman CSE803 Fall 2008,40,Different view of stinger,Rendered using ray tracing and pseudo coloring based on the material density clusters that were used to separate object from background. (D

26、ata scanned at Argonne National Labs),Stockman CSE803 Fall 2008,41,Section of interesting points from RMT&SVM,Stockman CSE803 Fall 2008,42,Segmentation of Scutigera,Stockman CSE803 Fall 2008,43,Scutergera: a tiny crustacean,organism is smaller than 1 mmscanned by volume segmented and meshed by Paul

27、Albeeroughly ten million trianglesto represent the surfaceanaglyph created for 3D visualization (view with glasses),Stockman CSE803 Fall 2008,44,Axis of least inertia,gives object oriented coordinate systempasses through centroidaxis of most inertia is perpendicular to itconcept extends to 3D and nD,Stockman CSE803 Fall 2008,45,Derive the formula for best axis,use least squares to derive the tangent angle q of the axis of least inertiaexpress tan 2q in terms of the 3 second momentsinterpret the formula for a circle of pixels and a straight line of pixels,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1