ImageVerifierCode 换一换
格式:PPT , 页数:21 ,大小:93KB ,
资源ID:378953      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378953.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Binomial Identities.ppt)为本站会员(孙刚)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Binomial Identities.ppt

1、Binomial Identities,Expansion of (a + x)n,(a + x) = a + x = 1C0a + 1C1x (a + x)(a + x) = aa + ax + xa + xx = x2 + 2ax + a2 = 2C0x2 + 2C1ax + 2C2a2 The 4 red terms are the “formal” expansion of (a+x)2 The 3 blue terms are the “simplified” expansion of (a+x)2 (a + x)(a + x)(a + x) = aaa + aax + axa +

2、axx + xaa + xax + xxa + xxx = x3 + 3a2x + 3ax2 + a3 = 3C0x3 + 3C1a2x + 3C2ax2 + 3C3a3,Generalizing . . .,In (a + x)4, how many terms does the:formal expansion have? simplified expansion have? In (a + x)n, how many terms does the:formal expansion have? simplified expansion have?,The Coefficient on ak

3、xn-k,The coefficient on akxn-k is the number of terms in the formal expansion that have exactly k as (and hence exactly n-k xs). It is equal to the number of ways of choosing an a from exactly k of the n binomial factors: nCk.,Binomial Theorem,(1 + x)n = nC0x0 + nC1x1 + nC2x2 + . . . nCnxn In additi

4、on to the combinatorial argument that the coefficient of xi is nCi, we can prove this theorem by induction on n.,Binomial Identities,nCk = n!/k!(n-k)! = nCn-k The number of ways to pick k objects from n = the ways to pick not pick k (i.e., to pick n-k). Pascals identity: nCk = n-1Ck + n-1Ck-1 The nu

5、mber of ways to pick k objects from n can be partitioned into 2 parts: Those that exclude a particular object i: n-1Ck Those that include object i: n-1Ck-1 Give an algebraic proof of this identity.,nCk kCm = nCm n-mCk-m,Each side of the equation counts the number of k-subsets with an m-subsubset. Th

6、e LHS counts: 1. Pick k objects from n: nCk 2. Pick m special objects from the k: kCm The RHS counts: 1. Pick m special objects that will be part of the k-subset: nCm 2. Pick the k-m non-special objects: n-mCk-m,Pascals Triangle,kth number in row n is nCk:,1,1,1,1,2,1,1,3,3,1,n = 4,n = 3,n = 2,n = 1

7、,n = 0,1,4,6,4,1,k = 0,k = 1,k = 2,k = 3,k = 4,Displaying Pascals Identity,0C0,n = 4,n = 3,n = 2,n = 1,n = 0,k = 0,k = 1,k = 2,k = 3,k = 4,1C0,1C1,2C0,2C1,2C2,3C0,3C1,3C2,3C3,4C0,4C1,4C2,4C3,4C4,Block-walking Interpretation,0C0,n = 4,n = 3,n = 2,n = 1,n = 0,k = 0,k = 1,k = 2,k = 3,k = 4,1C0,1C1,2C0,

8、2C1,2C2,3C0,3C1,3C2,3C3,4C0,4C1,4C2,4C3,4C4,nCk = # ways to get to corner n,k starting from 0,0,nCk = # strings of n Ls & Rs with k Rs.,Pascals Identity via Block-walking,0C0,n = 4,n = 3,n = 2,n = 1,n = 0,k = 0,k = 1,k = 2,k = 3,k = 4,1C0,1C1,2C0,2C1,2C2,3C0,3C1,3C2,3C3,4C0,4C1,4C2,4C3,4C4,# routes

9、to corner n,k = # routes thru corner n-1,k + # routes thru corner n-1,k-1,nC0 + nC1 + nC2 + . . . + nCn = 2n,LHS counts # subsets of n elements using the sum rule: partitioning the subsets according to their size (k value). RHS counts # subsets of n elements using the product rule: Is element 1 in s

10、ubset? (2 choices) Is element 2 in subset? (2 choices) Is element n in subset? (2 choices),rCr + r+1Cr + r+2Cr + . . . + nCr = n+1Cr+1,0C0,n = 4,n = 3,n = 2,n = 1,n = 0,k = 0,k = 1,k = 2,k = 3,k = 4,1C0,1C1,2C0,2C1,2C2,3C0,3C1,3C2,3C3,4C0,4C1,4C2,4C3,4C4,rCr + r+1Cr + r+2Cr + . . . + nCr = n+1Cr+1,R

11、HS = routes to corner 4,2 LHS: Partition the routes to 4,2 into those: whose last right branch is at corner 1,1: 1C1 whose last right branch is at corner 2,1: 2C1 whose last right branch is at corner 3,1: 3C1For each subset of routes, there is only 1 way to complete the route from that corner to 4,2

12、: RLL, RL, & R respectively. The identity generalizes this argument.,nC02 + nC12 + nC22 + + nCn2 = 2nCn,0C0,n = 4,n = 3,n = 2,n = 1,n = 0,k = 0,k = 1,k = 2,k = 3,k = 4,1C0,1C1,2C0,2C1,2C2,3C0,3C1,3C2,3C3,4C0,4C1,4C2,4C3,4C4,nC02 + nC12 + nC22 + + nCn2 = 2nCn,RHS = all routes to corner 4,2 LHS partit

13、ions routes to 4,2 into those that: go thru corner 2,0: 2C0 2C2 go thru corner 2,1: 2C1 2C1 go thru corner 2,2: 2C2 2C0 The identity generalizes this argument: # routes to 2n, n that go thru n,k = nCk nCn-k Sum over k = 0 to n,123 + 234 + 345 + (n-2)(n-1)n = ?,The general term = (k-2)(k-1)k = P(k,3)

14、 = k!/(k-3)! = 3! kC3 Sum = 3!3C3 + 3!4C3 + 3!5C3 +.+ 3!nC3 = 3! 3C3 + 4C3 + 5C3 +.+ nC3 = 3! n+1C4,A Strategy,When the general term of a sum is not a binomial coefficient: break it into a sum of P(n, k) terms, if possible; rewrite these terms using binomial coefficients,12 + 22 + 32 +. . . + n2 = ?

15、 General term: = k2 = k(k-1) + k = P(k, 2) + k = 2! kC2 + k,Sum k=1,n (2! kC2 + k ) = 2! k=1,n kC2 + k=1,n k = 2! n+1C3 + n+1C2,Another Strategy: Manipulate the Binomial Theorem,(1 + 1)n = 2n = nC0 + nC1 + . . . + nCn (1 - 1)n = 0 = nC0 - nC1 + nC2 - . . . +(-1)n nCn ornC0 + nC2 . . . = nC1 + nC3 + . . . = 2n-1 Differentiate the Binomial theorem, n(1 + x)n-1 = 1nC1x0 + 2nC2x1 + 3nC3x2 + + nnCnxn-1 n(1 + 1)n-1 = 1nC1 + 2nC2 + 3nC3 + + nnCn,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1