ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:169.50KB ,
资源ID:379574      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-379574.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Chapter 13Curve Fitting and Correlation.ppt)为本站会员(lawfemale396)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Chapter 13Curve Fitting and Correlation.ppt

1、1,Chapter 13 Curve Fitting and Correlation,This chapter will be concerned primarily with two separate but closely interrelated processes: (1) the fitting of experimental data to mathematical forms that describe their behavior and (2) the correlation between different experimental data to assess how

2、closely different variables are interdependent.,2,The fitting of experimental data to a mathematical equation is called regression. Regression may be characterized by different adjectives according to the mathematical form being used for the fit and the number of variables. For example, linear regre

3、ssion involves using a straight-line or linear equation for the fit. As another example, Multiple regression involves a function of more than one independent variable.,3,Linear Regression,Assume n points, with each point having values of both an independent variable x and a dependent variable y.,4,P

4、reliminary Computations,5,Best-Fitting Straight Line,6,Example 13-1. Find best fitting straight line equation for the data shown below.,7,Example 13-1. Continuation.,8,Example 13-1. Continuation.,9,Example 13-1. Continuation., x = 0:9; yapp = 1.9721*x + 4.1455; y = the 10 values of y; plot(x, yapp,

5、x, y, o)The best-fit plot and the actual points are shown on the next slide.,10,11,MATLAB General Polynomial Fit, x = x1 x2 x3.xn; y = y1 y2 y3yn; p = polyfit(x, y, m) yapp = polyval(p, x) plot(x, yapp, x, y, o),12,Example 13-2. Rework Example 13-1 using MATLAB., x = 0:9; y = the 10 values of y; p =

6、 polyfit(x, y, 1) p =1.9721 4.1455These are the same values obtained manually in Example 13-1.,13,Example 13-3. For data of previous two examples, obtain a 2nd degree fit.,Assume that the vectors x and y are still in memory. p = polyfit(x, y, 2) p =0.0011 1.9619 4.1591 yapp2 = polyval(p, x); plot(x,

7、 yapp2, x, y, o)The results are shown on the next slide.,14,15,Example 13-4. Determine several polynomial fits for the function below., t = -1:0.05:1; y = sin(pi*t); plot(t, y)A plot of the function is shown on the next slide.,16,17,Example 13-4. Continuation.,(a) m = 1 p1 = polyfit(t, y, 1) p1 =0.8

8、854 0.0000 yapp1 = polyval(p1, t); plot(t, yapp1, t, y, o)The results are shown on the next slide.,18,19,Example 13-4. Continuation.,(b) m = 2 p2 = polyfit(t, y, 2) p2 =0.0000 0.8854 -0.0000The polynomial is the same as for m = 1. This is due to the fact that the sine function is an odd function and

9、 the coefficients of the terms with even degrees are zero.,20,Example 13-4. Continuation.,(c) m = 3 p3 = polyfit(t, y, 3) p3 =-2.8139 -0.0000 2.6568 0.0000 yapp3 = polyval(p3, t); plot(t, yapp3, t, y, o)The results are shown on the next slide. A fit for m = 4 would be the same as for m = 3.,21,22,Ex

10、ample 13-5. Continuation.,m = 5 p5 = polyfit(t, y, 5) p5 =1.6982 0.0000 -4.7880 -0.0000 3.0990 0.0000 yapp5 = polyval(p5, t); plot(t, yapp5, t, y, o)The results are shown on the next slide.,23,24,Example 13-5. For data below, obtain a 2nd degree fit for the temperature T as a function of the distanc

11、e x., x = 0:5; T = 71 76 86 100 118 140; p = polyfit(x,T,2) p =2.0893 3.4107 70.8214,25,Example 13-5. Continuation., x1 = 0:0.1:5; T1 = polyval(p, x1); plot(x1, T1, x, T, o)The results are shown on the next slide.,26,27,Multiple Linear Regression,28,Multiple Regression (Continuation),29,MATLAB Proce

12、dure for Linear Regression,1. Form m column vectors each of length k representing the independent variables. x1 = x11 x12 x13x1k; x2 = x21 x22 x23x2k; . . xm = xm1 xm2 xm3.xmk;,30,MATLAB Procedure (Continuation),2. Form a column vector of length k representing the dependent variable y. y = y1 y2 y3.

13、yk; 3. Form a rectangular matrix X of size k by m+1 as follows: X= ones(size(x1) x1 x2 xm; 4. Determine a column vector a of length m+1 by the command that follows: a = Xy,31,MATLAB Procedure (Continuation),5. The best-fit linear multiple regression formula is then given by Y = X*a;6. The maximum di

14、fference between the actual data and the formula is Error_Maximum = max(abs(Y-y),32,Correlation,33,Correlation Coefficient,34,Implications of Correlation Coefficient,1. If C(x, y) = 1, the two variables are totally correlated in a positive sense.2. If C(x, y) = -1 , the two variables are totally correlated in a negative sense.3. If C(x, y) = 0, the two variables are said to be uncorrelated.,35,One Final Note,Correlation does not necessarily imply causation!,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1