ImageVerifierCode 换一换
格式:PPT , 页数:14 ,大小:53.50KB ,
资源ID:379635      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-379635.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Chapter 1The Self-Reducibility TechniqueMatt Boutell and Bill .ppt)为本站会员(arrownail386)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Chapter 1The Self-Reducibility TechniqueMatt Boutell and Bill .ppt

1、Chapter 1 The Self-Reducibility Technique Matt Boutell and Bill Scherer CSC 486 April 4, 2001,Historical Perspective,Berman 1978: P=NP a tally set that is m-hard for NPMahaney 1982: P=NP a sparse set that is m-complete for NPOgiwara, Watanabe 1991: todays lecture,p,p,Theorem: If an NP btt-hard spars

2、e set S, then P = NP.Technique: let L be an arbitrary language in NP. Then, using S and the reduction, we give a deterministic polynomial algorithm to decide L.,Proof Overview,p,An Alternate Characterization of the Class NP,A language LNP AP, polynomial p | x*, xL IFF (w)wp(|x|) x,wA.x = input w = w

3、itness = certificate = accepting path: A = checking algorithm,Left Sets,The left set, denoted LeftA,p, is x,y | x* yp(|x|) (wp(|x|) w lex y x,wA.,Note that having the left set non-empty the existence of an accepting path.,Maximum Witnesses,The Maximum Witness for some input x, denoted wmax(x), is ma

4、xy | yp(|x|) x,yA.Deciding xL Determining if wmax(x) is defined.(x*)(yp(|x|)x,yLeftA,p ylex wmax(x). (1.4),LeftA,p NP,LeftA,p NP (by guessing wmax(x), so since S is NP-hard, LeftA,p btt S via some function f.,p,What does btt mean?,Bounded truth table reductions, btt, are a type of reduction that use

5、s a very weak form of oracle.Ak-ttB via some function f means that A = L(MB), where M is a deterministic polynomial machine that on input x precomputes up to k queries, asks them all in parallel, and uses a k-ary Boolean function to compute the output.v1 v2 v3 vk 0 0 0 0 Yes M: 0 0 0 1 No1 1 1 1 No,

6、p,p,p,Back to the Proof,Let u be a pair x,y. Then with our reduction, uLeftA,p S satisfies f(u).Now, with query strings v1, v2, v3, vk, let (S(v1), S(v2), S(v3), S(vk) Yes, No; this line is a row in the truth table in our reduction to S.So f(u) is of the form , v1, v2, v3, vk.,Intervals,The trick we

7、 will use is to generate a polynomially bounded list of candidates for wmax(x). Once this list is generated, we can use brute force computation to see if any of these candidates are in fact witnesses.We do this by keeping track of a set of pair-wise disjoint intervals in the range 0p(|X|)1p(|X|), st

8、arting initially with the entire range.,The Interval Invariant,xL wmax(x)UII (1.5),Last Definition: Covering,Let 1, 2 be two collections of pair-wise disjoint intervals over p(|x|). Then 1 covers 2 with respect to x if:1) (I2) (J1)IJ 2) wmax(x) UI1 wmax(x) UI2,0,2,1,Facts With Covering,Let 1, 2, 3,

9、4 be sets of pair-wise disjoint intervals over p(|x|). Then (all with respect to x):1) If the interval invariant holds for 1 and 2 is a cover of 1, it also holds for 2.2) If 2 covers 1 and 3 covers 2, then 3 covers 1.3) If 2 covers 1 and 4 covers 3, then 2U4 covers 1U3.,0,2,1,The Theorem, Restated,If an NP btt-hard sparse set S, then P = NP.,p,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1