ImageVerifierCode 换一换
格式:PPT , 页数:32 ,大小:647KB ,
资源ID:379729      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-379729.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Chapter 3- Transport Layer.ppt)为本站会员(eveningprove235)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Chapter 3- Transport Layer.ppt

1、Transport Layer,3-1,Chapter 3: Transport Layer,Our goals: understand principles behind transport layer services: multiplexing/demultiplexing reliable data transfer flow control congestion control,learn about transport layer protocols in the Internet: UDP: connectionless transport TCP: connection-ori

2、ented transport TCP congestion control,Transport Layer,3-2,Chapter 3 outline,3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer,3.5 Connection-oriented transport: TCP segment structure reliable data transfer flo

3、w control connection management 3.6 Principles of congestion control 3.7 TCP congestion control,Transport Layer,3-3,Transport services and protocols,provide logical communication between app processes running on different hosts transport protocols run in end systems send side: breaks app messages in

4、to segments, passes to network layer rcv side: reassembles segments into messages, passes to app layer more than one transport protocol available to apps Internet: TCP and UDP,Transport Layer,3-4,Transport vs. network layer,network layer: logical communication between hosts transport layer: logical

5、communication between processes relies on, enhances, network layer services,A,B,C,D,Sport:4625 Dport: 80,Sport:8050 Dport: 25,Transport Layer,3-5,Internet transport-layer protocols,reliable, in-order delivery (TCP) congestion control flow control connection setup unreliable, unordered delivery: UDP

6、services not available: delay guarantees bandwidth guarantees,Transport Layer,3-6,Chapter 3 outline,3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer,3.5 Connection-oriented transport: TCP segment structure rel

7、iable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control,Transport Layer,3-7,Multiplexing/demultiplexing,= process,= socket,delivering received segments to correct socket,gathering data from multiple sockets, enveloping data with header (

8、later used for demultiplexing),application,transport,network,link,physical,P1,application,transport,network,link,physical,application,transport,network,link,physical,P2,P3,P4,P1,host 1,host 2,host 3,Transport Layer,3-8,How demultiplexing works,host receives IP datagrams each datagram has source IP a

9、ddress, destination IP address each datagram carries transport-layer segment each segment has source, destination port number host uses IP addresses & port numbers to direct segment to appropriate socket,source port #,dest port #,32 bits,application data (message),other header fields,TCP/UDP segment

10、 format,Transport Layer,3-9,Connectionless demultiplexing (UDP),Create a socket binding to a port numberUDP socket identified by two-tuple: (dest IP address, dest port number),When host receives UDP segment: checks destination port number in segment directs UDP segment to socket with that port numbe

11、r IP datagrams with different source IP/port can be directed to same socket,Transport Layer,3-10,Connectionless demux (cont),Client IP:B,server IP: C Port: 6428,SP: 9157,DP: 6428,Socket tuple: (dest IP address, dest port number) Two clients traffic can be mixed together at server,Transport Layer,3-1

12、1,Connection-oriented demux (TCP),TCP socket identified by 4-tuple: source IP address source port number dest IP address dest port number recv host uses all four values to direct segment to appropriate socket Two connections cannot mixed together at the receiver host,Server host may support many sim

13、ultaneous TCP sockets: each socket identified by its own 4-tuple Web servers have different sockets for each connecting client Remember the fork() and new socket generated by accept(),Transport Layer,3-12,Connection-oriented demux (cont),Client IP:B,server IP: C,SP: 9157,DP: 80,D-IP:C,S-IP: A,D-IP:C

14、S-IP: B,D-IP:C,S-IP: B,Transport Layer,3-13,Connection-oriented demux: Threaded Web Server,Client IP:B,server IP: C Port: 80,SP: 9157,DP: 80,P4,D-IP:C,S-IP: A,D-IP:C,S-IP: B,D-IP:C,S-IP: B,Transport Layer,3-14,Chapter 3 outline,3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Co

15、nnectionless transport: UDP 3.4 Principles of reliable data transfer,3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control,Transport Layer,3-15,UDP: User Datagram Protocol RFC

16、 768,“no frills,” “bare bones” Internet transport protocol “best effort” service, UDP segments may be: lost delivered out of order to app connectionless: no handshaking between UDP sender, receiver each UDP segment handled independently of others,Why is there a UDP? no connection establishment (whic

17、h can add delay) simple: no connection state at sender, receiver small segment header no congestion control: UDP can blast away as fast as desired UDP worm (Slammer),Transport Layer,3-16,UDP-based Worm: Slammer,Worm code flow: Exploit code (buffer overflow) Generate random target IP address x: Send(

18、) worm code to x on udp port 1434,Fast spreading worm code (Jan. 2003) Single UDP packet: 376 bytes Average scan rate: 4000 scans/sec Infect 90% in 10 minutes 100,000 infected in an hour,Bandwidth-limited worm Severely congested Internet Stopped ATM, Flight checking, ,TCP-based worm is much slower T

19、CP connection setup Connect() is a blocking call Multiple threads for spreading,Transport Layer,3-17,UDP: more,often used for streaming multimedia apps loss tolerant rate sensitive other UDP uses DNS SNMP reliable transfer over UDP: add reliability at application layer application-specific error rec

20、overy!,source port #,dest port #,32 bits,Application data (message),UDP segment format,length,checksum,Length, in bytes of UDP segment, including header,Transport Layer,3-18,UDP checksum,Sender: treat segment contents as sequence of 16-bit integers checksum: 1s complement of addition of segment cont

21、ents sender puts checksum value into UDP checksum field,Receiver: Add all received 16-bit segments, including checksum check if result is 1111 1111 1111 1111: NO - error detected YES - no error detected. But maybe errors nonetheless? More later .,Goal: detect “errors” (e.g., flipped bits) in transmi

22、tted segment,Transport Layer,3-19,Internet Checksum Example,Note When adding numbers, a carryout from the most significant bit needs to be added to the result Example: add two 16-bit integers,1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 11 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 11 1 0 1

23、1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1,wraparound,sum,checksum,Transport Layer,3-20,Chapter 3 outline,3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer,3.5 Connection-oriented transport: TC

24、P segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control,Transport Layer,3-21,Principles of Reliable data transfer,important in app., transport, link layers top-10 list of important networking topics!,characteristic

25、s of unreliable channel will determine complexity of reliable data transfer protocol (rdt),Network layer,Transport Layer,3-22,Reliable data transfer: getting started,send side,receive side,Transport Layer,3-23,Reliable data transfer: getting started,Well: incrementally develop sender, receiver sides

26、 of reliable data transfer protocol (rdt) consider only unidirectional data transfer but control info will flow on both directions! use finite state machines (FSM) to specify sender, receiver,event causing state transition,actions taken on state transition,state: when in this “state” next state uniq

27、uely determined by next event,Transport Layer,3-24,Rdt1.0: reliable transfer over a reliable channel,Assumption: underlying channel perfectly reliable no bit errors no loss of packets separate FSMs for sender, receiver: sender sends data into underlying channel receiver read data from underlying cha

28、nnel,Wait for call from above,packet = make_pkt(data) udt_send(packet),rdt_send(data),extract (packet,data) deliver_data(data),Wait for call from below,rdt_rcv(packet),sender,receiver,Only need to chop bit-stream data into packets and send,Modern Internet packet has Maximum Transition Unit (MTU) of

29、1500 Bytes (Ethernet),Transport Layer,3-25,Rdt2.0: channel with bit errors,Assumption #1: underlying channel may flip bits in packet checksum to detect bit errors Assumption # 2: no packet will be lost the question: how to recover from errors: acknowledgements (ACKs): receiver explicitly tells sende

30、r that pkt received OK negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors sender retransmits pkt on receipt of NAK new mechanisms in rdt2.0 (beyond rdt1.0): Error detection (checksum) Receiver feedback: control msgs (ACK,NAK) rcvr-sender Sender retransmit if NAK,T

31、ransport Layer,3-26,rdt2.0: FSM specification,Wait for call from above,snkpkt = make_pkt(data, checksum) udt_send(sndpkt),extract(rcvpkt,data) deliver_data(data) udt_send(ACK),rdt_rcv(rcvpkt) & notcorrupt(rcvpkt),rdt_rcv(rcvpkt) & isACK(rcvpkt),udt_send(sndpkt),rdt_rcv(rcvpkt) &isNAK(rcvpkt),sender,

32、receiver,rdt_send(data),L,L : means no action,Transport Layer,3-27,rdt2.0: operation with no errors,Wait for call from above,snkpkt = make_pkt(data, checksum) udt_send(sndpkt),extract(rcvpkt,data) deliver_data(data) udt_send(ACK),rdt_rcv(rcvpkt) & notcorrupt(rcvpkt),rdt_rcv(rcvpkt) & isACK(rcvpkt),u

33、dt_send(sndpkt),rdt_rcv(rcvpkt) &isNAK(rcvpkt),Wait for call from below,rdt_send(data),L,Transport Layer,3-28,rdt2.0: error scenario,Wait for call from above,snkpkt = make_pkt(data, checksum) udt_send(sndpkt),extract(rcvpkt,data) deliver_data(data) udt_send(ACK),rdt_rcv(rcvpkt) & notcorrupt(rcvpkt),

34、rdt_rcv(rcvpkt) & isACK(rcvpkt),udt_send(sndpkt),rdt_rcv(rcvpkt) &isNAK(rcvpkt),Wait for call from below,rdt_send(data),L,Transport Layer,3-29,rdt2.0 has a fatal flaw!,What happens if ACK/NAK corrupted? sender doesnt know what happened at receiver! Time-out and retransmit cant just retransmit: possi

35、ble duplicate,Handling duplicates: sender retransmits current pkt if ACK/NAK garbled sender adds sequence number to each pkt receiver discards (doesnt deliver up) duplicate pkt,Sender sends one packet, then waits for receiver response,Transport Layer,3-30,rdt2.1: sender, handles garbled ACK/NAKs,Wai

36、t for call 0 from above,sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt),rdt_send(data),udt_send(sndpkt),rdt_rcv(rcvpkt) & ( corrupt(rcvpkt) | isNAK(rcvpkt) ),sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt),rdt_send(data),rdt_rcv(rcvpkt) & notcorrupt(rcvpkt) & isACK(rcvpkt),udt_send(sndpk

37、t),rdt_rcv(rcvpkt) & ( corrupt(rcvpkt) | isNAK(rcvpkt) ),rdt_rcv(rcvpkt) & notcorrupt(rcvpkt) & isACK(rcvpkt),L,L,Transport Layer,3-31,extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt),rdt2.1: receiver, handles garbled ACK/NAKs,sndpkt = make_pkt(NAK, chksum) udt

38、send(sndpkt),rdt_rcv(rcvpkt) & not corrupt(rcvpkt) &has_seq0(rcvpkt),rdt_rcv(rcvpkt) & notcorrupt(rcvpkt) & has_seq1(rcvpkt),extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt),rdt_rcv(rcvpkt) & notcorrupt(rcvpkt) & has_seq0(rcvpkt),rdt_rcv(rcvpkt) & (corrupt(rcv

39、pkt),sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt),rdt_rcv(rcvpkt) & not corrupt(rcvpkt) &has_seq1(rcvpkt),rdt_rcv(rcvpkt) & (corrupt(rcvpkt),sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt),sndpkt = make_pkt(NAK, chksum) udt_send(sndpkt),Why ACK for wrong sequence packet?,Transport Layer,3-32,rdt2

40、1: discussion,Sender: seq # added to pkt two seq. #s (0,1) will suffice. Why? must check if received ACK/NAK corrupted What if seq. # error? twice as many states state must “remember” whether “current” pkt has 0 or 1 seq. #,Receiver: must check if received packet is duplicate state indicates whether 0 or 1 is expected pkt seq # note: receiver can not know if its last ACK/NAK received OK at sender,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1