ImageVerifierCode 换一换
格式:PPT , 页数:16 ,大小:1.31MB ,
资源ID:389476      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-389476.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Supercharging Analytics on Big DataAnnouncing 1000+ .ppt)为本站会员(bowdiet140)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Supercharging Analytics on Big DataAnnouncing 1000+ .ppt

1、Supercharging Analytics on Big Data Announcing 1000+ MapReduce-ready Advanced Analytic Functions June 21st. 2010,Aster Datas Solution A Data-Analytics Server for Big Data Management,Rich, advanced analytics on large data volumes,Examples of Advanced Analytic Applications,FederalCyber defense Fraud a

2、nalysis Watch list analysis,Internet / Social MediaUser behavioral analysis Graph analysis Pattern analysis Context-based click-stream analysis,RetailPackaging optimization Consumer buying patterns Advertising and attribution analysis,TelecommunicationsService personalization Call Data Record (CDR)

3、analysis Network analysis,Financial Services and Insurance Credit and risk analysis Value at risk calculation Fraud analysis,Common Use Cases Forecasting Modeling Customer segmentation Clickstream analysis,What all these Applications have in Common,FederalCyber defense Fraud analysis Watch list anal

4、ysis,Internet / Social MediaUser behavioral analysis Graph analysis Pattern analysis Context-based click-stream analysis,RetailPackaging optimization Consumer buying patterns Advertising and attribution analysis,TelecommunicationsService personalization Call Data Record (CDR) analysis Network analys

5、is,Financial Services and Insurance Credit and risk analysis Value at risk calculation Fraud analysis,Common Use Cases Forecasting Modeling Customer segmentation Clickstream analysis,Aster Data: Big Data Analytics & Bringing MapReduce to the Enterprise,Business Analyst Ready: 30+ SQL-MapReduce funct

6、ions, fully parallelized and available as part of Aster Analytic Foundation library Example Functions include: Text processing k-Means cluster analysis Unpack data transformationsPower User Functions: 40+ MapReduce-ready, automatically parallelized packages with 1000+ functions, available in java or

7、 C All functions are available in native languages without learning curve of a separate procedural language Example Functions include: Monte Carlo simulation Histograms Linear algebra Statistics,New: Expanded Suite of MapReduce-ready Analytics Totaling 1000+ Functions,Aster Data Analytic Foundation

8、1 of 2) Examples of Business-Ready SQL-MapReduce Functions,Aster Data Analytic Foundation (2 of 2) Examples of Business-Ready SQL-MapReduce Functions,Example: nPath Function for time-series analysis,What this gives you: - Pattern detection via single pass over dataAllows you to understand any trend

9、 that needs to be analyzed over a continuous period of timeExample use cases: - Web analytics clickstream, golden path - Telephone calling patterns - Stock market trading sequences,Uncovering patterns in sequential steps,Complete Aster Data Application: Sessionization required to prepare data for pa

10、th analysis nPath identifies marketing touches that drove revenue,nPath in Use: Marketing Attribution,Example: Basket Generator Function,What this gives you? Creates groupings of related items via single pass over dataAllows you to increase or decrease basket size with a single parameter changeExamp

11、le use cases: Retail market basket analysis People who bought x also bought y,Extensible market basket analysis,Complete Aster Data Application: Evaluate effectiveness of marketing programs Launch customer recommendations feature Evaluate and improve product placement,Basket Generator in Use,Example

12、 k-Means Function,What this gives you: Organizes data into groupings or clusters based on shared attributesAllows you to understand natural segmentsExample use cases: Marketing segmentation Fraud detection Computer vision- object recognition,One call for clustering items into natural segments,Compl

13、ete Aster Data Application: Text processing required to prepare data for customer support analysis K-Means identifies hot product issues for proactive response,K-Means in Use: Contact Center,Example: Unpack Function,What this gives you: Translates unstructured data from a single field into multiple

14、structured columnsAllows business analysts access to data with standard SQL queriesExample use cases: Sales data Stock transaction logs Gaming play logs,Transforming hidden data into analyst accessible columns,Complete Aster Data Application: Text processing required to transform/unpack third party

15、sales data Sessionization required to prepare data for path analysis Statistical analysis of pricing,Unpack in Use: Pricing Analysis,4 New analytic application development partners building on Aster Data nCluster Fuzzy Logix In-database quantitative library DB Lytix, including mathematical and stati

16、stical methods, data mining algorithms and Monte Carlo simulation techniques Cobi Systems End-to-end analytic applications across financial services and retail Impetus Big data management applications integrating Aster Data nCluster and Hadoop Ermas Consulting In-database SAS and R applications,PLUS

17、 Announcing Additional Partners,Page 14,Aster Data & Fuzzy Logix: Advancing In-Database Analytics on Big Data,Balancing between large volumes of data, throughput and accuracy has always been a challenge- typically sacrifice one or more of these for practical considerations. Fuzzy Logix is providing

18、an analytical platform on Aster Data nCluster using SQL-MR wherein one can achieve all these three objectives simultaneously. Traditional constraints of data analysis are almost non-existent in this platform.,Powered by in-database analytics on Aster Data nCluster,Page 15,Introducing DB Lytix on Aster Data nCluster Runs In-database & Uses SQL-MapReduce for high performance analytics on big data volumes,“DB Lytix is the most noteworthy in-database analytics tool” Forrester Report, Nov 2009,Analytical Functions in DB Lytix,Aster Data Big Data Management & Analytics,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1