ImageVerifierCode 换一换
格式:PPT , 页数:36 ,大小:1.25MB ,
资源ID:389511      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-389511.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(survey on non linear filtering methods - thequantization and .ppt)为本站会员(hopesteam270)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

survey on non linear filtering methods - thequantization and .ppt

1、Comparative survey on non linear filtering methods : the quantization and the particle filtering approaches Afef SELLAMI,Chang Young Kim,Overview,Introduction Bayes filters Quantization based filters Zero order scheme First order schemes Particle filters Sequential importance sampling (SIS) filter S

2、ampling-Importance Resampling(SIR) filter Comparison of two approaches Summary,Non linear filter estimators,Quantization based filters Zero order scheme First order schemesParticle filtering algorithms: Sequential importance sampling (SIS) filter Sampling-Importance Resampling(SIR) filter,Overview,I

3、ntroduction Bayes filters Quantization based filters Zero order scheme First order schemes Particle filters Sequential importance sampling (SIS) filter Sampling-Importance Resampling(SIR) filter Comparison of two approaches Summary,Bayesian approach: We attempt to construct the nf of the state given

4、 all measurements.PredictionCorrection,Bayes Filter,One step transition bayes filter equationBy introducint the operaters , sequential definition of the unnormalized filter nForward Expression,Bayes Filter,Overview,Introduction Bayes filters Quantization based filters Zero order scheme First order s

5、chemes Particle filters Sequential importance sampling (SIS) filter Sampling-Importance Resampling(SIR) filter Comparison of two approaches Summary,Quantization based filters,Zero order scheme First order schemes One step recursive first order scheme Two step recursive first order scheme,Zero order

6、scheme,QuantizationSequential definition of the unnormalized filter nForward Expression,Zero order scheme,Recalling Taylor Series,Lets call our point x0 and lets define a new variable that simply measures how far we are from x0 ; call the variable h = x x0. Taylor Series formulaFirst Order Approxima

7、tion:,Introduce first order schemes to improve the convergence rate of the zero order schemes. Rewriting the sequential definition by mimicking some first order Taylor expansion:Two schemes based on the different approximation byOne step recursive scheme based on a recursive definition of the differ

8、ential term estimator.Two step recursive scheme based on an integration by part transformation of conditional expectation derivative.,First order schemes,One step recursive scheme,The recursive definition of the differential term estimatorForward Expression,Two step recursive scheme,An integration b

9、y part formulawherewhere,Comparisons of convergence rate,Zero order schemeFirst order schemes One step recursive first order schemeTwo step recursive first order scheme,Overview,Introduction Bayes filters Quantization based filters Zero order scheme First order schemes Particle filters Sequential im

10、portance sampling (SIS) filter Sampling-Importance Resampling(SIR) filter Comparison of two approaches Summary,Particle filtering,Consists of two basic elements: Monte Carlo integrationImportance sampling,Importance sampling,Proposal distribution: easy to sample from,Original distribution: hard to s

11、ample from, easy to evaluate,Importance weights,we want samples fromand make the following importance sampling identifications,Sequential importance sampling (SIS) filter,Proposal distribution,Distribution from which we want to sample,SIS Filter Algorithm,Sampling-Importance Resampling(SIR),Problems

12、 of SIS: Weight DegenerationSolution RESAMPLING Resampling eliminates samples with low importance weights and multiply samples with high importance weights Replicate particles when the effective number of particles is below a threshold,Sampling-Importance Resampling(SIR),x,Sensor model,Update,Resamp

13、ling,Prediction,Overview,Introduction Bayes filters Quantization based filters Zero order scheme First order schemes Particle filters Sequential importance sampling (SIS) filter Sampling-Importance Resampling(SIR) filter Comparison of two approaches Summary,Elements for a comparison,Complexity Numer

14、ical performances in three state models: Kalman filter (KF) Canonical stochastic volatility model (SVM) Explicit non linear filter,Complexity comparison,Numerical performances,Three models chosen to make up the benchmark. Kalman filter (KF) Canonical stochastic volatility model (SVM) Explicit non li

15、near filter,Kalman filter (KF),Both signal and observation equations are linear with Gaussian independent noises. Gaussian process which parameters (the two first moments) can be computed sequentially by a deterministic algorithm (KF),Canonical stochastic volatility model (SVM),The time discretizati

16、on of a continuous diffusion model.State Model,Explicit non linear filter,A non linear non Gaussian state equation Serial Gaussian distributions SG()State Model,Numerical performance Results,Convergence teststhree test functions:Kalman filter: d=1,Numerical performance Results : Convergence rate imp

17、rovement,Kalman filter: d=3,Numerical performance Results,Stochastic volatility model,Numerical performance Results,Non linear explicit filter,Conclusions,Particle methods do not suffer from dimension dependency when considering their theoretical convergence rate, whereas quantization based methods

18、do depend on the dimension of the state space. Considering the theoretical convergence results, quantization methods are still competitive till dimension 2 for zero order schemes and till dimension 4 for first order ones. Quantization methods need smaller grid sizes than Monte Carlo methods to attain convergence regions,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1