ImageVerifierCode 换一换
格式:PPT , 页数:20 ,大小:185KB ,
资源ID:389596      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-389596.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Tabled Prolog and Linear Tabling.ppt)为本站会员(unhappyhay135)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Tabled Prolog and Linear Tabling.ppt

1、Linear Tabling,1,Tabled Prolog and Linear Tabling,Neng-Fa Zhou (City Univ. of New York) Yi-Dong Shen (Chinese Academy of Sciences) Taisuke Sato (Tokyo Inst. of Technology),Linear Tabling,2,Tabling is Useful,Eliminate infinite loops path(X,Y):-edge(X,Y). path(X,Y):-edge(X,Z),path(Z,Y). Reduce redunda

2、nt computations fib(0,1). fib(1,1). fib(N,F):-N1, N1 is N-1,fib(N1,F1), N2 is N-2,fib(N2,F2), F is F1+F2.,Linear Tabling,3,Tabling in OLDT (SLG-WAM),A.,A.,.,producer,consumer,suspend/resume Complicate implementation freeze stacks overhead on standard programs garbage collection,table,A is suspended

3、after the existing answers are exhausted,Linear Tabling,4,Linear Tabling,A.,A.,.,pioneer,follower,table,A fails or becomes a producer after consuming existing answersA needs to be re-evaluated in some cases,Advantages Easy to implement Space efficient Overhead-free Disadvantage Re-computation Optimi

4、zations Subgoal optimization Semi-nave evaluation,Linear Tabling,5,The Linear Tabling Framework,Augmented programs,p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y). p(X,Y):-e(X,Y),memo(p(X,Y). p(X,Y):-check_completion(p(X,Y).,p(X,Y):-p(X,Z),e(Z,Y). p(X,Y):-e(X,Y).,Linear Tabling,6,The Linear Tabling Framework (con

5、t.),table_start(A) Executed when a tabled subgoal A is encountered memo(A) Executed when a clause succeeds check_completion(A) Executed after all clauses have been tried.,Linear Tabling,7,Definitions,Loops, pioneers and followers,A derivation GiGj forms a loop if Gi=(A,) and Gj=(A,) A and A are vari

6、ants A is an ancestor of A Subgoal A is called a pioneer and A is called a follower of A.,Linear Tabling,8,Definitions (cont.),Top-most looping nodes and subgoalsA node in an SLD-tree is called a top-most looping node if the selected subgoal of the node is the pioneer of a loop that is not contained

7、 in any other loops.,Linear Tabling,9,A Linear Tabling Method,table_start(A) If A is complete, resolve A by using answers. If A is a pioneer, register A and resolve A by using program clauses. If A is a follower, resolve A by using answers and fail A after all existing answers are exhausted.,Linear

8、Tabling,10,A Linear Tabling Method (cont.),memo(A) Add A into the table and fail.,Linear Tabling,11,A Linear Tabling Method (cont.),check_completion(A) If A has never occurred in a loop, complete A and resolve A by using the answers. If A is a top-most looping subgoal If no new answer was produced i

9、n the last round, then complete A and resolve A by using the answers Otherwise, start a new round of evaluation of A. If A is a looping subgoal but not a top-most one Set As state to temporary complete and resolve A by using the answers,Linear Tabling,12,Example,p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y). (p

10、1) p(X,Y):-e(X,Y),memo(p(X,Y). (p2) p(X,Y):-check_completion(p(X,Y). (p3)e(a,b). (e1) e(b,c). (e2),1. p(a,Y0).,2. p(a,Z1), e(Z1,Y0), memo(p(a,Y0).,3. e(a,Y0), memo(p(a,Y0).,4. memo(p(a,b).,5. check_comp(p(a,Y0).,First round,p1,p2,e1,p3,program,Linear Tabling,13,1. p(a,Y0).,6. p(a,Z1), e(Z1,Y0), memo

11、(p(a,Y0).,10. check_comp(p(a,Y0).,Second round,p1,p3,7. e(b,Y0), memo(p(a,Y0).,8. memo(p(a,c).,use p(a,b),e2,9. e(c,Y0), memo(p(a,Y0).,use p(a,c),p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y). (p1) p(X,Y):-e(X,Y),memo(p(X,Y). (p2) p(X,Y):-check_completion(p(X,Y). (p3) e(a,b). (e1) e(b,c). (e2),p(a,b).,program,t

12、able,p2,p(a,b). p(a,c).,Linear Tabling,14,Characteristics of the Method,Fixpoints are computed by iterating the evaluation of top-most looping subgoals Followers consume answers only Pioneers consume answers lazily Top-most looping subgoals consume answers after they are complete Other looping subgo

13、als consume answers after all clauses have been tried,Linear Tabling,15,Adopted and Related Tabling Strategies,Lazy answer consumption Local scheduling strategy in SLG-WAM Freire96 What to do after a follower consumes all available answers? Steals the pioneers choice pointer Zhou00 Fails the followe

14、r Guo & Gupta 01 Where to start re-computation? At the top-most looping subgoal Shen98 At every looping subgoal Guo01,Linear Tabling,16,Strengths and Weaknesses,Lazy answer consumption is suitable for all-solution search A basic operation used in PRISM Not suitable for single-solution search or prog

15、rams with cuts For the query, once(p(X), all solutions are computed even though only one is needed.,Linear Tabling,17,Optimization Techniques,Subgoal Optimization In each round of evaluation of a top-most looping subgoal, each subgoal needs to be evaluated only once. Semi-nave Optimization Mimic the

16、 semi-nave technique in bottom-up evaluation: at least one new answer is involved in the join of answers for each rule.,Linear Tabling,18,Semi-nave Evaluation in Linear Tabling,Let H:-A1,Ak,An be a rule where Ak is the last dependent subgoal of H. For a subgoal C of H, it is safe for Ak to consume o

17、nly new answers if: 1. C has occurred in an early round 2. No subgoal Ai (ik) has consumed a new answer.,Linear Tabling,19,Performance Evaluation,BP vs. XSB (CPU time),BP vs. XSB (Stack space),Linear Tabling,20,Papers,N.F. Zhou, Y.D. Shen, L. Yuan, and J. You: A Linear Tabling Mechanism, The Journal

18、 of Functional and Logic Programming, 2001. N.F. Zhou and T. Sato: Efficient Fixpoint Computation in Linear Tabling, ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming (PPDP), pp.275-283, 2003. N.F. Zhou, Y. Shen, and T. Sato: Semi-naive Evaluation in Linear Tabling, ACM PPDP, pp.90-97, 2004.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1