ImageVerifierCode 换一换
格式:PPT , 页数:27 ,大小:161KB ,
资源ID:389599      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-389599.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Tagging with Hidden Markov Models.ppt)为本站会员(rimleave225)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Tagging with Hidden Markov Models.ppt

1、Tagging with Hidden Markov Models,CMPT 882 Final Project Chris Demwell Simon Fraser University,The Tagging Task,Identification of the part of speech of each word of a corpusSupervised: Training corpus provided consisting of correctly tagged textUnsupervised: Uses only plain text,Hidden Markov Models

2、 1,Observable states (corpus text) generated by hidden states (tags) Generative model,Hidden Markov Models 2,Model: = A, B, A: State transition probability matrix ai,j = probability of changing from state i to state j B: Emission probability matrix bj,k = probability that word at location k is assoc

3、iated with tag j : Intial state probability i = probability of starting in state i,Hidden Markov Models 3,Terms in this presentationN: Number of hidden states in each column (distinct tags) T: Number of columns in trellis (time ticks) M: Number of symbols (distinct words) O: The observation (the unt

4、agged text) bj(t): The probability of emitting the symbol found at tick t, given state j t,j and t,j : The probability of arriving at state i in time tick t, given the observation before and after tick t (respectively),Hidden Markov Models 4,A is a NxN matrix B is a NxT matrix is a vector of size N,

5、1,2,a1,1,a1,2,b1,1,b1,2,Forward Algorithm,Used for calculating Likelihood quickly t,i: The probability of arriving at trellis node (t,j) given the observation seen “so far”. Initialization 1,i = i Induction,2,2,1,1,1,2,1,3,Backward Algorithm,Symmetrical to Forward Algorithm Initialization T,i =1 for

6、 all I Induction:,1,2,2,1,2,2,2,3,Baum-Welch Re-estimation,Calculate two new matrices of intermediate probabilities , Calculate new A, B, given these probabilities Recalculate and , p(O | ) Repeat until p(O | ) doesnt change much,HMM Tagging 1,Training Method Supervised Relative Frequency Relative F

7、requency with further Maximum Likelihood training Unsupervised Maximum Likelihood training with random start,HMM Tagging 2,Read corpus, take counts and make translation tables Train HMM using BW or compute HMM using RF Compute most likely hidden state sequence Determine POS role that each state most

8、 likely plays,HMM Tagging: Pitfalls 1,Monolithic HMM Relatively opaque to debugging strategies Difficult to modularize Significant time/space efficiency concerns Varied techniques for prior implementations Numerical Stability Very small probabilities likely to underflow Log likelihood Text Chunking

9、Sentences? Fixed? Stream?,HMM Tagging: Pitfalls 2,State role identification Lexicon giving p(tag | word) from supervised corpus Unseen words Equally likely tags for multiple states Local maxima HMM not guaranteed to converge on correct model Initial conditions Random Trained Degenerate,HMM Tagging:

10、Prior Work 1,Cutting et al. Elaborate reduction of complexity (ambiguity classes) Integration of bias for tuning (lexicon choice, initial FB values) Fixed-size text chunks, model averaging between chunks for final model 500,000 words of Brown corpus: 96% accurate after eight iterations,HMM Tagging:

11、Prior Work 2,Merialdo Contrasted computed (Relative Frequency) vs trained (BWRE) models Constrained training Keep p(tag | word) constant from bootstrap corpus RF Keep p(tag) constant from bootstrap corpus RF Constraints allow degradation, but more slowly Constraints required extensive calculation,Co

12、nstraints and HMM Tagging 1,Elworthy: Accuracy of classic trained HMM always decreases after some point,From Elworthy, “Does Baum-Welch Re-Estimation Help Taggers?”,Constraints and HMM Tagging 2,Tagging: An excellent candidate for a CSP Many degrees of freedom in nave case Linguistically, only some

13、few tagging solutions are possible HMM, like modern CSP techniques, does not make final choices in order Merialdos t and t-w constraints Expensive, but helpful,Constraints and HMM Tagging 3,Obvious places to incorporate constraints Updates to A, B, Deny an update to A if tag at (t+1) should not foll

14、ow tag at (t) Deny an update to B if we are confident that word at (t) should not be associated with tag at (t) Merialdos t and t-w constraints,Constraints and HMM Tagging 4,Obvious places to incorporate constraints Forward-Backward calculations Some tags are linguistically impossible sequentially D

15、eny transition probability,Constraints and HMM Tagging 5,Where to get constraints?Grammar databases (WordNet)Bootstrap corpus Use relative frequencies of tags to guess rules Use frequencies of words to estimate confidence Allow violations?,reMarker: Motivation,reMarker, an implementation in Java of

16、HMM taggingSupport for multiple modelsModular updates for constraint implementation,reMarker: The Reality,HMM component too time-consuming to debug Preliminary rule implementations based on corpus RF Using Tapas Kanugos HMM implementation in C, externally,reMarker: Method,Penn-Treebank Wall Street J

17、ournal part-of-speech tagged data Corpus handled as stream of words Restriciton of Kanugos HMM implementation Results in enormous resource requirements Results in degradation of accuracy with increase in training data size,reMarker: Experiment,Two corpora 200 words of PT WSJ Section 00 5000 words of

18、 PT WSJ Section 00 Three training methods Relative Frequency, computed Supervised, but with BWRE Unsupervised BWRE,reMarker: Results,Future Work,Fix the reMarker HMM Allow corpus chunking Allow more complicated constraints Incorporate tighter constraints Merialdos t and t-w Possible POS for each wor

19、d: WordNet Machine-learned rules,References,A Tutorial on Hidden Markov Models. Rakesh Dugad and U. B. Desai. Technical Report, Signal Processing and Artificial Neural Networks Laboratory, Indian Institute of Technology, SPANN-96.1. Does Baum-Welch Re-estimation help taggers? (1994). David Elworthy.

20、 Proceedings of 4th ACL Conf on ANLP, Stuttgart. pp. 53-58. A Practical Part-of-Speech Tagger (1992). Doug Cutting, Julian Kupiec, Jan Pedersen and Penelope Sibun. In Proceedings of ANLP-92. Tagging text with a probabilistic model (1994). Bernard Merialdo. Computational Linguistics 20(2):155-172. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models (1997). Jeff A. Bilmes, Technical Report, University of Berkeley, ICSI-TR-97-021.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1