ImageVerifierCode 换一换
格式:PDF , 页数:190 ,大小:2MB ,
资源ID:396210      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-396210.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(BS ISO IEC 10967-2-2001 Information technology Language independent arithmetic Elementary numerical functions《信息技术 独立于语言的算术 基本数值函数》.pdf)为本站会员(roleaisle130)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

BS ISO IEC 10967-2-2001 Information technology Language independent arithmetic Elementary numerical functions《信息技术 独立于语言的算术 基本数值函数》.pdf

1、BRITISH STANDARD BS ISO/IEC 10967-2:2001 Information technology Language independent arithmetic Part 2: Elementary numerical functions ICS 35.060 NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAWBS ISO/IEC 10967-2:2001 This British Standard, having been prepared under the direct

2、ion of the DISC Board, was published under the authority of the Standards Policy and Strategy Committee on 24 August 2001 BSI 24 August 2001 ISBN 0 580 38060 2 National foreword This British Standard reproduces verbatim ISO/IEC 10967-2:2001 and implements it as the UK national standard. The UK parti

3、cipation in its preparation was entrusted to Technical Committee IST/5, Programming Languages, Their Environments and System Software Interfaces, which has the responsibility to: A list of organizations represented on this committee can be obtained on request to its secretary. Cross-references The B

4、ritish Standards which implement international or European publications referred to in this document may be found in the BSI Standards Catalogue under the section entitled “International Standards Correspondence Index”, or by using the “Find” facility of the BSI Standards Electronic Catalogue. A Bri

5、tish Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application. Compliance with a British Standard does not of itself confer immunity from legal obligations. aid enquirers to understand the text; present

6、to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed; monitor related international and European developments and promulgate them in the UK. Summary of pages This document comprises a front cover, an insi

7、de front cover, the ISO/IEC title page, pages ii to x, pages 1 to 177 and a back cover The BSI copyright date displayed in this document indicates when the document was last issued. Amendments issued since publication Amd. No. Date CommentsReference number ISO/IEC 10967-2:2001(E) ISO/IEC 2001 INTERN

8、ATIONAL STANDARD ISO/IEC 10967-2 First edition 2001-08-15 Information technology Language independent arithmetic Part 2: Elementary numerical functions Technologies de linformation Arithmtique de langage indpendant Partie 2: Fonctions numriques lmentairesii ISO/IEC109672:2001(E) c CEI/OSI 1002 llA r

9、ights vreserde ISO/IEC 10967-2:2001(E) Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Scope 1 1.1 Inclusions . . . . . . . . . . . .

10、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Exclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Conformity 2 3 Normative references 3 4 Symbols and denitions 4 4.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11、. . . . . . . . . . . 4 4.1.1 Sets and intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1.2 Operators and relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1.3 Mathematical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.1.

12、4 Exceptional values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.1.5 Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.2 Denitions of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Specications for integ

13、er and oating point operations 10 5.1 Basic integer operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1.1 The integer result and wrap helper functions . . . . . . . . . . . . . . . . . 10 5.1.2 Integer maximum and minimum . . . . . . . . . . . . . . . . . . . . . . .

14、. 11 5.1.3 Integer diminish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.1.4 Integer power and arithmetic shift . . . . . . . . . . . . . . . . . . . . . . . 12 5.1.5 Integer square root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.1.6 Divisibility t

15、ests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.1.7 Integer division (with oor, round, or ceiling) and remainder . . . . . . . . 13 5.1.8 Greatest common divisor and least common positive multiple . . . . . . . . 13 5.1.9 Support operations for extended integer range . .

16、. . . . . . . . . . . . . . . 14 5.2 Basic oating point operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2.1 The rounding and oating point result helper functions . . . . . . . . . . . 15 5.2.2 Floating point maximum and minimum . . . . . . . . . . . . . . . . . . . . 17 5.2

17、.3 Floating point diminish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2.4 Floor, round, and ceiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2.5 Remainder after division with round to integer . . . . . . . . . . . . . . . . 20 5.2.6 Square root and reciproca

18、l square root . . . . . . . . . . . . . . . . . . . . . 20 5.2.7 Multiplication to higher precision oating point datatype . . . . . . . . . . 20 5.2.8 Support operations for extended oating point precision . . . . . . . . . . . 21 5.3 Elementary transcendental oating point operations . . . . . . . .

19、 . . . . . . . . . 22 5.3.1 Maximum error requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3.2 Sign requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.3 Monotonicity requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.4 The

20、result helper function . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.5 Hypotenuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3.6 Operations for exponentiations and logarithms . . . . . . . . . . . . . . . . 24 iii ISO/IEC109672:2001(E) ICEI/OS )E(1002

21、:2-76901 c ISO/IEC 2001 All rights reserved 5.3.6.1 Integer power of argument base . . . . . . . . . . . . . . . . . . . 24 5.3.6.2 Natural exponentiation . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.6.3 Natural exponentiation, minus one . . . . . . . . . . . . . . . . . . 26 5.3.6.4 Expon

22、entiation of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.6.5 Exponentiation of 10 . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.6.6 Exponentiation of argument base . . . . . . . . . . . . . . . . . . . 28 5.3.6.7 Exponentiation of one plus the argument base, minus one . .

23、 . . . 29 5.3.6.8 Natural logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3.6.9 Natural logarithm of one plus the argument . . . . . . . . . . . . . 30 5.3.6.10 2-logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.6.11 10-logarithm . . . . . . . . . .

24、 . . . . . . . . . . . . . . . . . . . . 31 5.3.6.12 Argument base logarithm . . . . . . . . . . . . . . . . . . . . . . . 31 5.3.6.13 Argument base logarithm of one plus each argument . . . . . . . . 32 5.3.7 Introduction to operations for trigonometric elementary functions . . . . . . 32 5.3.8 Ope

25、rations for radian trigonometric elementary functions . . . . . . . . . . 33 5.3.8.1 Radian angle normalisation . . . . . . . . . . . . . . . . . . . . . . 34 5.3.8.2 Radian sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3.8.3 Radian cosine . . . . . . . . . . . . . . . . .

26、. . . . . . . . . . . . 35 5.3.8.4 Radian tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3.8.5 Radian cotangent . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3.8.6 Radian secant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3.8.7 Radian cosecant

27、. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3.8.8 Radian cosine with sine . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3.8.9 Radian arc sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3.8.10 Radian arc cosine . . . . . . . . . . . . . . . . . . . . . . . .

28、. . . 38 5.3.8.11 Radian arc tangent . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3.8.12 Radian arc cotangent . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3.8.13 Radian arc secant . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3.8.14 Radian arc cosecant . . . . . .

29、. . . . . . . . . . . . . . . . . . . . 41 5.3.8.15 Radian angle from Cartesian co-ordinates . . . . . . . . . . . . . . 42 5.3.9 Operations for trigonometrics with given angular unit . . . . . . . . . . . . 43 5.3.9.1 Argument angular-unit angle normalisation . . . . . . . . . . . . . 43 5.3.9.2 Ar

30、gument angular-unit sine . . . . . . . . . . . . . . . . . . . . . . 44 5.3.9.3 Argument angular-unit cosine . . . . . . . . . . . . . . . . . . . . 45 5.3.9.4 Argument angular-unit tangent . . . . . . . . . . . . . . . . . . . . 45 5.3.9.5 Argument angular-unit cotangent . . . . . . . . . . . . . .

31、 . . . . 46 5.3.9.6 Argument angular-unit secant . . . . . . . . . . . . . . . . . . . . 47 5.3.9.7 Argument angular-unit cosecant . . . . . . . . . . . . . . . . . . . 47 5.3.9.8 Argument angular-unit cosine with sine . . . . . . . . . . . . . . . 48 5.3.9.9 Argument angular-unit arc sine . . . . .

32、 . . . . . . . . . . . . . . 48 5.3.9.10 Argument angular-unit arc cosine . . . . . . . . . . . . . . . . . . 48 5.3.9.11 Argument angular-unit arc tangent . . . . . . . . . . . . . . . . . 49 5.3.9.12 Argument angular-unit arc cotangent . . . . . . . . . . . . . . . . 50 5.3.9.13 Argument angular-u

33、nit arc secant . . . . . . . . . . . . . . . . . . 51 5.3.9.14 Argument angular-unit arc cosecant . . . . . . . . . . . . . . . . . 51 5.3.9.15 Argument angular-unit angle from Cartesian co-ordinates . . . . . 52 5.3.10 Operations for angular-unit conversions . . . . . . . . . . . . . . . . . . . .

34、53 5.3.10.1 Converting radian angle to argument angular-unit angle . . . . . . 53 iv ISO/IEC109672:2001(E) c ISO/IEC 2001 All rights reserved CEI/OSI )E(1002:2-76901 5.3.10.2 Converting argument angular-unit angle to radian angle . . . . . . 54 5.3.10.3 Converting argument angular-unit angle to (ano

35、ther) argument angular-unit angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3.11 Operations for hyperbolic elementary functions . . . . . . . . . . . . . . . . 56 5.3.11.1 Hyperbolic sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.11.2 Hyperbolic cosine . . . .

36、 . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.11.3 Hyperbolic tangent . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.11.4 Hyperbolic cotangent . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.11.5 Hyperbolic secant . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

37、5.3.11.6 Hyperbolic cosecant . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.11.7 Inverse hyperbolic sine . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.11.8 Inverse hyperbolic cosine . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.11.9 Inverse hyperbolic tangent . . . . . .

38、. . . . . . . . . . . . . . . . 60 5.3.11.10 Inverse hyperbolic cotangent . . . . . . . . . . . . . . . . . . . . . 60 5.3.11.11 Inverse hyperbolic secant . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.11.12 Inverse hyperbolic cosecant . . . . . . . . . . . . . . . . . . . . . . 61 5.4 Operati

39、ons for conversion between numeric datatypes . . . . . . . . . . . . . . . . 62 5.4.1 Integer to integer conversions . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4.2 Floating point to integer conversions . . . . . . . . . . . . . . . . . . . . . . 63 5.4.3 Integer to oating point convers

40、ions . . . . . . . . . . . . . . . . . . . . . . 64 5.4.4 Floating point to oating point conversions . . . . . . . . . . . . . . . . . . 64 5.4.5 Floating point to xed point conversions . . . . . . . . . . . . . . . . . . . . 65 5.4.6 Fixed point to oating point conversions . . . . . . . . . . . . .

41、 . . . . . . . 66 5.5 Numerals as operations in a programming language . . . . . . . . . . . . . . . . . . 67 5.5.1 Numerals for integer datatypes . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.5.2 Numerals for oating point datatypes . . . . . . . . . . . . . . . . . . . . . 68 6 Notication

42、68 6.1 Continuation values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7 Relationship with language standards 69 8 Documentation requirements 70 Annex A (normative) Partial conformity 73 A.1 Maximum error relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43、 . . . . 73 A.2 Extra accuracy requirements relaxation . . . . . . . . . . . . . . . . . . . . . . . . 74 A.3 Relationships to other operations relaxation . . . . . . . . . . . . . . . . . . . . . . 74 A.4 Very-close-to-axis angular normalisation relaxation . . . . . . . . . . . . . . . . . . 74 A.5

44、 Part 1 requirements relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Annex B (informative) Rationale 77 B.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 B.1.1 Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45、. . . . . . . . . 77 B.1.2 Exclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 B.2 Conformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 B.2.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46、. . 79 B.3 Normative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 B.4 Symbols and denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 v ISO/IEC109672:2001(E) ICEI/OS )E(1002:2-76901 c ISO/IEC 2001 All rights reserved B.4.1 Symbols . .

47、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 B.4.1.1 Sets and intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 B.4.1.2 Operators and relations . . . . . . . . . . . . . . . . . . . . . . . . 80 B.4.1.3 Mathematical functions . . . . . . . . . . . . .

48、. . . . . . . . . . . 80 B.4.1.4 Exceptional values . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 B.4.1.5 Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 B.4.2 Denitions of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 B.5 Specications f

49、or the numerical functions . . . . . . . . . . . . . . . . . . . . . . . 81 B.5.1 Basic integer operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 B.5.1.1 The integer result and wrap helper functions . . . . . . . . . . . . 82 B.5.1.2 Integer maximum and minimum . . . . . . . . . . . . . . . . . . . 82 B.5.1.3 Integer diminish . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 B.5.1.4 Integer power and arithmetic shift . . . . . . . . . . . . . . . . . . 83 B.5.1.5 Integer square root . .

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1