ImageVerifierCode 换一换
格式:PDF , 页数:24 ,大小:2MB ,
资源ID:397396      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-397396.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(BS PD CEN TR 16875-2015 Cereal and cereal products Technical report of the interlaboratory study for the determination of impurities content in maize (Zea mays L ) and sor.pdf)为本站会员(syndromehi216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

BS PD CEN TR 16875-2015 Cereal and cereal products Technical report of the interlaboratory study for the determination of impurities content in maize (Zea mays L ) and sor.pdf

1、BSI Standards Publication PD CEN/TR 16875:2015 Cereal and cereal products Technical report of the interlaboratory study for the determination of impurities content in maize (Zea mays, L.) and sorghum (Sorghum bicolor, L.)PD CEN/TR 16875:2015 PUBLISHED DOCUMENT National foreword This Published Docume

2、nt is the UK implementation of CEN/TR 16875:2015. The UK participation in its preparation was entrusted to Technical Committee AW/4, Cereals and pulses. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all

3、 the necessary provisions of a contract. Users are responsible for its correct application. The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 89963 8 ICS 67.060 Compliance with a British Standard cannot confer immunity from legal obligations. This Publish

4、ed Document was published under the authority of the Standards Policy and Strategy Committee on 30 September 2015. Amendments/corrigenda issued since publication Date T e x t a f f e c t e dPD CEN/TR 16875:2015TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER BERICHT CEN/TR 16875 September 2015 ICS 67.

5、060 English Version Cereal and cereal products - Technical report of the interlaboratory study for the determination of impurities content in maize (Zea mays, L.) and sorghum (Sorghum bicolor, L.) Crales et produits craliers - Rapport technique de ltude interlaboratoires pour la dtermination de la t

6、eneur en impurets dans le mas (Zea mays, L.) et le sorgho (Sorghum bicolor, L.) This Technical Report was approved by CEN on 27 July 2015. It has been drawn up by the Technical Committee CEN/TC 338. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech R

7、epublic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROP

8、EAN COMMITTEE FOR STANDARDIZATION COMIT EUROPEN DE NORMALISATION EUROPISCHES KOMITEE FR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels 2015 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. CEN/TR 16875:2015 EP

9、D CEN/TR 16875:2015 CEN/TR 16875:2015 (E) 2 Contents Page European foreword . 3 Introduction 4 1 Scope 5 2 Normative references 5 3 Design of the study 6 3.1 Conception and organization 6 3.1.1 Method 6 3.1.2 Participants . 6 3.1.3 Design and schedule of the study 6 3.2 Product 6 3.3 Fabrication 6 3

10、.4 Homogeneity and stability . 6 3.5 Form . 6 4 Statistics . 7 4.1 Methodology . 7 4.2 Statistical treatment. 7 5 Results of the interlaboratory study 7 5.1 Validation of the raw results . 7 5.2 Detection of stragglers and outliers . 7 5.3 Stragglers and outliers detections 9 5.4 Statistics 10 5.5 R

11、esults 10 Annex A (informative) Raw results . 16 A.1 Broken grains 16 A.2 Grains impurities . 17 A.3 Sprouted grains . 18 A.4 Miscellaneous impurities 19 A.5 Total impurities 20 PD CEN/TR 16875:2015 CEN/TR 16875:2015 (E) 3 European foreword This document (CEN/TR 16875:2015) has been prepared by Tech

12、nical Committee CEN/TC 338 “Cereal and cereal products”, the secretariat of which is held by AFNOR. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and/or CENELEC shall not be held responsible for identifying any or all such p

13、atent rights. PD CEN/TR 16875:2015 CEN/TR 16875:2015 (E) 4 Introduction The principle of the determination of impurities is to separate all the groups of impurities from the normal basic cereal grains of unimpaired quality by sieving and manual selection out of a subsample and to quantify them. The

14、amount of impurities and its constituent groups is important for health, cleaning, milling and further processing aspects. For these reasons impurities content is a part of contracts in grain trade and also of the grain intervention system of the EU. At present a European standard for the determinat

15、ion of impurities in maize and sorghum (EN 16378) has been developed. An international interlaboratory trial for the determination of impurities in maize and sorghum was accomplished in order to get information on the intra- and interlaboratory variability of the determination of impurities content.

16、 The technical report here describes the preparation and evaluation of the results of this interlaboratory test. PD CEN/TR 16875:2015 CEN/TR 16875:2015 (E) 5 1 Scope The term impurities applies to all components of a grain sample that differ from the normal basic cereal. It includes the following gr

17、oups: broken grains, other cereals, grains damaged by pests, grains overheated during drying, sprouted grains, extraneous seeds, unsound grains, extraneous matter and impurities of animal origin. The principle of the determination of impurities content is to separate all the groups of impurities fro

18、m the normal basic cereal grains of unimpaired quality by sieving and manual selection out of a subsample and to quantify them. There are various problems in the determination of impurities: Firstly, the identification of the different groups of impurities depends strongly on the experience and the

19、knowledge of the investigator. Also experienced investigators can differ in their characterization of grains. Finally, one is faced with the fact that grain, even after mixing, is rarely homogenous. In other words, if a sample was divided by a sample divider into a number of portions, the amount of

20、a specific group of impurities in each portion could be different, even if absolutely no human or machine error occurred in each determination. These problems will result in variation of the results of the determination. An international interlaboratory test for the determination of impurities, acco

21、rding to this standard and involving 14 laboratories in 4 countries, was carried out with 5 maize and 3 sorghum samples. It was asked to participants to make determination in duplicate. Ten laboratories reported results for the complete sample set and two only for corns. The test materials ranged be

22、tween: 0,0 % and 2,7 % for broken grains; 0,2 % and 3,5 % for grain impurities; 0,0 % and 0,1 % for sprouted grains; 0,5 % and 3,3 % for miscellaneous impurities; 1,8 % and 8,7 % for total impurities. The aim of the study is to determine the precision, repeatability and reproducibility of the method

23、 of determination of impurities content in maize and sorghum samples. The analyses were realized in March - April 2011. It occurs according to ISO 5725:1994. 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its

24、 application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 16378, Cereals - Determination of impurities content in maize (Zea mays, L.) and sorghum (Sorghum bicolor, L.) PD CEN/TR 16

25、875:2015 CEN/TR 16875:2015 (E) 6 3 Design of the study 3.1 Conception and organization 3.1.1 General The interlaboratory comparisons of this test were designed according to the wishes of AFNOR and organized by BIPEA. 3.1.2 Method The participants made a commitment to apply strictly the described met

26、hod and to prepare the samples according to the method provided with the commitment letter for participating to the test: the standard EN 16378. 3.1.3 Participants Fourteen laboratories made a commitment to participate to the test. Twelve did answer. 3.1.4 Design and schedule of the study Each labor

27、atory received eight samples: 5 samples of corn and 3 samples of sorghums, according to a blind distribution. In order to take into account the sampling of the laboratory into the precision values, the laboratories realized two analytical series on two sub-samples from each sample, leading to sixtee

28、n determinations of impurities. Tests were conducted between March, 1st and April, 26th, 2011. In order to be as close as possible to repeatability conditions, the two sub-samples analyses has been realized during a time as short as possible. The repeatability variance is an intra-laboratory varianc

29、e. However, in order to be easier to read, it is called repeatability mean in the report. 3.2 Product In order to cover the scope of the method, the products analysed are maize mixes and sorghum mixes. 3.3 Fabrication The samples are produced according to the following procedure: Each batch is homog

30、enized and divided in samples serials. This operation is made with a carousel. The principle of turning spreading, that involves a progressive filling, ensures the homogeneity of the product between each sample. The samples of maize 1, 2 and 4 and the samples of sorgho 1 and 3 were of 500 g in paper

31、 bags. The samples of maize 3 and 5 and the samples of sorgho 2 were of 1 kg in paper bags. The weights were increased for some samples in order to integer the division step inside the laboratory. 3.4 Homogeneity and stability On this test, no control was planned. However, homogeneity and stability

32、were considered as sufficient by the working group for the test, during its conception. 3.5 Form In addition to final results, expressed in % of impurities, the weights values were requested to the participants. The form sheet template is in A.2. PD CEN/TR 16875:2015 CEN/TR 16875:2015 (E) 7 4 Statis

33、tics 4.1 Methodology The precision parameters were calculated on the two sub-samples of each impurity category according to the following plan. Figure 1 4.2 Statistical treatment The statistical treatment was carried out according to ISO 5725-2. 5 Results of the interlaboratory study 5.1 Validation

34、of the raw results The project leader realized the checks of the calculations of impurities contents from the weight values. A laboratory seems not to have followed the method; it was excluded from the calculations of the precision parameters (laboratory 7568). A laboratory did not write correctly h

35、is results, it has a lack of traceability of its samples (laboratory 2190). The results of the corn 3 have been reported on the corn 2 form sheets, those of corn 4 on the form sheet for corn 3 and those of corn 2 on the form sheet of corn 4. The traceability and the results have been corrected. 5.2

36、Detection of stragglers and outliers Stragglers and outliers detection have been realized with statistical tests on the provided results except for the excluded laboratory above: Cochrans test: outliers and stragglers for variances (at 5 % and 1 %); PD CEN/TR 16875:2015 CEN/TR 16875:2015 (E) 8 Grubb

37、s test: outliers and stragglers for means (at 5% and 1 %). The principles of the tests and the decision rules are described in ISO 5725-2. The results of those tests are presented in Table A.9 and Table A.10, in A.5. As abstract: For the corn 1: the variance of the laboratory 8577 for miscellaneous

38、impurities has been detected as outlier; the variance of the laboratory 8577 for total impurities has been detected as straggler; the mean of the laboratory 7489 for broken grains has been detected as outlier; the mean of the laboratory 6723 for total impurities has been detected as straggler. For t

39、he corn 2: the variance of the laboratory 5909 for broken grains has been detected as outlier; the mean of the laboratory 7489 for broken grains has been detected as outlier; the mean of the laboratories 6723 and 8577 for miscellaneous impurities has been detected as straggler; For the corn 3: the v

40、ariance of the laboratories 5909 for miscellaneous impurities and 6723 for total impurities has been detected as outlier; the variance of the laboratory 6637 for sprouted grains has been detected as straggler; the mean of the laboratory 8577 for miscellaneous impurities and for total impurities has

41、been detected as straggler. For the corn 4: the variance of the laboratory 8577 for sprouted grains and for grain impurities has been detected as outlier; the variance of the laboratory 8577 for broken grains and for total impurities has been detected as straggler; the mean of the laboratory 8577 fo

42、r miscellaneous impurities has been detected as straggler. For the corn 5: the variance of the laboratory 8577 for broken grains and for miscellaneous impurities has been detected as outlier; the variance of the laboratory 8577 for grain impurities and for total impurities has been detected as strag

43、gler; the mean of the laboratory 6723 for grain impurities, for miscellaneous impurities and for total impurities; PD CEN/TR 16875:2015 CEN/TR 16875:2015 (E) 9 the mean of laboratory 8577 for miscellaneous impurities has been detected as straggler. For the sorgho 1: the variance of the laboratory 57

44、03 for grain impurities has been detected as outlier; the mean of the laboratory 6723 for grain impurities has been detected as straggler. For the sorgho 2: the variance of the laboratory 7489 for total impurities has been detected as outlie; the variance of the laboratory 7489 for miscellaneous imp

45、urities has been detected as straggle; the mean of the laboratory 6723 for grain impurities has been detected as straggler. For the sorgho 3: the variance of the laboratory 7489 for miscellaneous impurities and for total impurities has been detected as straggler. The values for which the means are j

46、udged as stragglers have been excluded from the precision parameters calculation for the concerned corns and the sorghum. The values for which the variances are judged as stragglers have been excluded from the precision parameters calculation for the concerned corns and the sorghum. 5.3 Stragglers a

47、nd outliers detections Table 1 Cochrans test: stragglers (in bold) and outliers for variances Lab numbers Maize 1 Maize 2 Maize 3 Maize 4 Maize 5 Sorghum 1 Sorghum 2 Sorghum 3 Broken grains - 5909 - 8577 8577 - - - Grain impurities - - - 8577 8577 5703 - - Sprouted grains - - 6637 8577 - - - - Misce

48、llaneous impurities 8577 - 5909 - 8577 - 7489 7489 Total impurities 8577 - - 8577 8577 - 7489 7489 Table 2 Grubbs test: stragglers (in bold) and outliers for means Lab numbers Maize 1 Maize 2 Maize 3 Maize 4 Maize 5 Sorghum 1 Sorghum 2 Sorghum 3 Broken grains 7489 7489 Grain impurities 6723 6723 672

49、3 Sprouted grains Miscellaneous impurities 6723 8577 8577 8577 6723 8577 Total impurities 6723 6723 8577 6723 PD CEN/TR 16875:2015 CEN/TR 16875:2015 (E) 10 5.4 Statistics Analyses of variance (ANOVA) were realized on each sample in order to determine the intra-laboratory (repeatability) and interlaboratory (reproducibility) variabilities. For each sample, from the results the following have been calculated: the mean; repeatability and reproducibility standard deviations; rep

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1