ImageVerifierCode 换一换
格式:PDF , 页数:48 ,大小:2MB ,
资源ID:397573      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-397573.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(BS PD CLC TR 50485-2010 Electromagnetic compatibility — nEmission measurements in fully nanechoic chambers《电磁兼容性 全电波暗室发射测定》.pdf)为本站会员(deputyduring120)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

BS PD CLC TR 50485-2010 Electromagnetic compatibility — nEmission measurements in fully nanechoic chambers《电磁兼容性 全电波暗室发射测定》.pdf

1、raising standards worldwide NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW BSI Standards Publication Electromagnetic compatibility Emission measurements in fully anechoic chambers PD CLC/TR 50485:2010National foreword This Published Document is the UK implementation of CLC/TR

2、 50485:2010. It supersedes PD CR R210-010:2002 which is withdrawn. The UK participation in its preparation was entrusted by Technical Committee GEL/210, EMC - Policy committee, to Subcommittee GEL/210/12, EMC basic, generic and low frequency phenomena Standardization. A list of organizations represe

3、nted on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. BSI 2010 ISBN 978 0 580 64296 8 ICS 33.100.10 Compliance with a British Standard cannot conf

4、er immunity from legal obligations. This Published Document was published under the authority of the Standards Policy and Strategy Committee on 30 June 2010. Amendments issued since publication Amd. No. Date Text affected BRITISH STANDARD PD CLC/TR 50485:2010 TECHNICAL REPORT CLC/TR 50485 RAPPORT TE

5、CHNIQUE TECHNISCHER BERICHT March 2010 CENELEC European Committee for Electrotechnical Standardization Comit Europen de Normalisation Electrotechnique Europisches Komitee fr Elektrotechnische Normung Central Secretariat: Avenue Marnix 17, B - 1000 Brussels 2010 CENELEC - All rights of exploitation i

6、n any form and by any means reserved worldwide for CENELEC members. Ref. No. CLC/TR 50485:2010 E ICS 33.100.10 Supersedes R210-010:2002English version Electromagnetic compatibility - Emission measurements in fully anechoic chambers Compatibilit lectromagntique - Emission en chambres anchoques entier

7、s Elektromagnetische Vertrglichkeit - Straussendung in Absorberrumen This Technical Report was approved by CENELEC on 2009-12-17. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, German

8、y, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. PD CLC/TR 50485:2010CLC/TR 50485:2010 2 Foreword This Technical Report was prepared by the Tec

9、hnical Committee CENELEC TC 210, Electromagnetic Compatibility (EMC). This document supersedes R210-010:2002. In order not to loose the information provided in R210-010:2002, CENELEC TC 210 decided to transfer the content of that document unchanged into a Technical Report. It should be noted that CI

10、SPR incorporated a major part of the document R210-010:2002 into the CISPR 16 series and the references to standards were not updated. The document still provides a comprehensive overview and describes some fundamental items of interest for the appropriate use of fully anechoic chambers. The main re

11、ason for keeping the document in the public domain in this new form is that it contains background information that has not been included in EN 55016-1-4. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENELEC shall not b

12、e held responsible for identifying any or all such patent rights. PD CLC/TR 50485:2010 3 CLC/TR 50485:2010 Contents 1 Scope 5 2 References .5 3 Definitions and abbreviations 6 3.1 Definitions .6 3.2 Abbreviations 7 4 Test and measurement equipment 7 4.1 Fully Anechoic Rooms (FARs) 7 4.2 Antenna .7 5

13、 Anechoic room performance .8 5.1 Theoretical normalised site attenuation 8 5.2 Room validation procedure 10 5.3 Anechoic room requirements . 13 6 Emission measurement . 13 6.1 Test set up . 13 6.2 EUT position . 15 6.3 Cable layout and termination . 16 7 Test procedure . 17 8 Test plan 17 9 Test re

14、port . 18 Annex A (informative) Determining the Site Reference . 19 Annex B (informative) Limit values 21 Annex C (informative) Comparison of measurement uncertainties for 3 m OATS and 3 m FAR . 27 C.1 Introduction 27 C.2 Uncertainty budgets for 3 m OATS and 3 m FAR 28 C.3 Comments on uncertainty bu

15、dgets 30 Annex D (informative) Derivation of free space NSA formula . 32 D.1 Theoretical free space Normalised Site Attenuation 32 D.2 NSA formula for near-field separations 35 Annex E (informative) Corrections of field strength for test distance 36 E.1 Introduction 36 E.2 Field strength correction

16、factor for LPDAs . 37 Annex F (informative) NSA measurements with biconical antennas . 38 F.1 Background 38 F.2 ANSI method 39 F.3 Conclusion . 39 Annex G (informative) Measurement of Balun imbalance . 40 Annex H (informative) FAR project . 41 H.1 Description of the FAR project . 41 H.2 Rationale of

17、 the FAR project 41 Bibliography . 43 PD CLC/TR 50485:2010CLC/TR 50485:2010 4 Figures Figure 1 Theoretical NSA 9 Figure 2 Measurement points in room validation procedure 11 Figure 3 Typical test set-up in FAR, where a, b, c and e depend on the room performance 14 Figure 4 Typical test set-up for tab

18、le top equipment within the test volume of a FAR . 15 Figure 5 Typical test set-up for floor standing equipment within the test volume of a FAR . 16 Figure A.1 Free space site reference measurement set up . 20 Figure B.1 Differences in emission measurement results between OATS and FAR . 22 Figure B.

19、2 Geometrical optics model for OATS measurements 23 Figure B.3 Field attenuation between two half-wave dipoles above ground plane with fixed transmit antenna height and variable receive antenna height . 23 Figure B.4 Equivalent circuit diagram of a typical Equipment Under Test (EUT) 24 Figure B.5 Di

20、fferences in the received field strength of an electrically short straight wire on an ideal OATS (1 m 4 m scan of the receive antenna), and in a FAR (E OATS E FAR ) 25 Figure B.6 Differences in the received field strength of an electrically short straight wire on an ideal OATS (1 m 4 m scan of the r

21、eceive antenna), and in a FAR (E OATS E FAR ) 26 Figure F.1 NSA values for free space, calculated for a small and a large biconical antenna separated by 3 m 38 Tables Table 1 Frequency ranges and step sizes . 11 Table 2 Relation between maximum diameter of EUT and test distance 13 Table B.1 Preferre

22、d limits . 21 Table C.1 Uncertainty budget for emission measurements on 3 m open area test site 28 Table C.2 Uncertainty budget for emission measurements in 3 m FAR 29 PD CLC/TR 50485:2010 5 CLC/TR 50485:2010 1 Scope This Technical Report applies to emission measurements of radiated electromagnetic

23、fields in Fully Anechoic Rooms (FAR) in the frequency range from 30 MHz to 18 GHz. This Technical Report covers the frequency range from 30 MHz 1 000 MHz. The frequency range above 1 GHz is under consideration, due to the absence of practical experience. This Technical Report describes the validatio

24、n procedure for the Fully Anechoic Room for radiated emission tests and the procedures to carry out the tests (e.g. test set up, EUT position, cable layout and termination, test procedures). Recommendations for the relation between FAR emission limits and common Open Area Test Site (OATS) emission l

25、imits given in standards such as EN 55011 and EN 55022 are given in Annex B. This FAR emission method may be chosen by product committees as an alternative method to emission measurement on an Open Area Test Site (OATS) as described in CISPR 16 series. In such cases, the product committee should als

26、o define the appropriate limits. Typical measurement uncertainty values for FARs and OATS are given in Annex C. 2 References The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the la

27、test edition of the referenced document (including any amendments) applies. EN 50147-1, Anechoic chambers Part 1: Shield attenuation measurement EN 55011, Industrial, scientific and medical (ISM) radio-frequency equipment Electromagnetic disturbance characteristics Limits and methods of measurement

28、(CISPR 11, mod.) EN 55022:1998 1) , Information technology equipment Radio disturbance characteristics Limits and methods of measurement (CISPR 22:1997, mod.) CISPR 16-1:1999 2) , Specification for radio disturbance and immunity measuring apparatus and methods Part 1: Radio disturbance and immunity

29、measuring apparatus CISPR 16-2 3) , Specification for radio disturbance and immunity measuring apparatus and methods Part 2: Methods of measurement of disturbance and immunity CISPR 16-3:2000 4) , Specification for radio disturbance and immunity measuring apparatus and methods Part 3: Reports and re

30、commendations of CISPR CISPR 16-4 series, Specification for radio disturbance and immunity measuring apparatus and methods Part 4: Uncertainties, statistics and limit modelling IEC 60050-161, International Electrotechnical Vocabulary (IEV) Chapter 161: Electromagnetic compatibility 1)Superseded by E

31、N 55022:2006, Information technology equipment Radio disturbance characteristics Limits and methods of measurement (CISPR 22:2005, mod.). 2)Superseded by CISPR 16-1 series, harmonized as EN 55016-1 series, Specification for radio disturbance and immunity measuring apparatus and methods Part 1: Radio

32、 disturbance and immunity measuring apparatus. 3)Superseded by CISPR 16-2 series, harmonized as EN 55016-2 series, Specification for radio disturbance and immunity measuring apparatus and methods Part 2: Methods of measurement of disturbance and immunity. 4)Superseded by CISPR 16-3:2003, Specificati

33、on for radio disturbance and immunity measuring apparatus and methods Part 3: CISPR technical reports. PD CLC/TR 50485:2010CLC/TR 50485:2010 6 3 Definitions and abbreviations 3.1 Definitions For the purposes of this document, the terms and definitions given in IEC 60050-161 and the following apply.

34、3.1.1 Fully Anechoic Room (FAR) shielded enclosure whose internal surfaces are lined with radio frequency absorbing material (i.e. RAM), that absorbs electromagnetic energy in the frequency range of interest NOTE The fully Absorber-Lined Room is intended to simulate free space environment. 3.1.2 Equ

35、ipment Under Test (EUT) test sample including connected cables NOTE The EUT may consist of one or several pieces of equipment. 3.1.3 test volume region of the room that meets the NSA requirements of this Technical Report and which contains the EUT as fully set up 3.1.4 free space antenna factor (AF

36、FS ) antenna factor of an antenna which is not affected by mutual coupling to conducting bodies in the environment of the antenna NOTE It is also the antenna factor measured when the antenna under test is illuminated by a plane wave, which implies that the source antenna is in the far-field of the a

37、ntenna under test. Antenna factor is defined as the ratio of the magnitude of the E-field in which the antenna is immersed to the voltage at the antenna output of a given transmission line impedance, usually 50 . 3.1.5 antenna reference point physical position on the antenna from which the separatio

38、n distance to the defined reference plane on the EUT is measured NOTE For dipole and biconical antennas this will be the centre of the antenna in line with the central antenna elements. For an LPDA antenna and a hybrid antenna, the reference point is the mark on the antenna provided by the manufactu

39、rer for this purpose. The reference point is approximately at the mid-way point between the array elements that are active at the top and bottom frequencies at which the measurements are being made. Hybrid antenna is here defined as a combination of a biconical and LPDA antenna which has a frequency

40、 range including 30 MHz to 1 GHz. 3.1.6 Normalised Site Attenuation (NSA) site attenuation obtained from the ratio of the source voltage connected to a transmitting antenna and the received voltage as measured on the receiving antenna terminals NOTE Normalised site attenuation is site attenuation in

41、 decibels minus the antenna factors of the transmit and receive antenna factors. NSA was first introduced for evaluation of open area test sites with ground planes and was measured by height scanning the receive antenna. In this Technical Report, NSA is measured in a quasi-free space environment, an

42、d because there is no deliberate ground plane, height scanning is not required. 3.1.7 test distance (d t ) distance measured from the reference point of the antenna to the front of the boundary of the EUT PD CLC/TR 50485:2010 7 CLC/TR 50485:2010 3.2 Abbreviations For the purposes of this document, t

43、he following abbreviations apply. EUT Equipment Under Test FAR Fully Anechoic Room NSA Normalised Site Attenuation AF FSAntenna Factor (free space) LPDA Log-Periodic Dipole Array OATS Open Area Test Site RS Reference Site SA Site Attenuation SA Rmeasurement of SA made on RS NEC Numerical Electromagn

44、etic Code 4 Test and measurement equipment Equipment in accordance with CISPR 16 series shall be used. 4.1 Fully Anechoic Rooms (FARs) A Fully Anechoic Room is required for the emission testing in which the radiated electromagnetic waves propagate as in free space and only the direct ray from the tr

45、ansmitting antenna reaches the receiving antenna. All indirect and reflected waves shall be minimised with the use of proper absorbing material on all walls, the ceiling and the floor of the FAR. The screening of the FAR shall have an adequate attenuation level to avoid outside electromagnetic radia

46、tion entering the room and influencing the measurement results. The shield attenuation is measured in accordance with EN 50147-1. Shielding recommendations are given in CLC/TR 50484. 4.2 Antenna Linear polarised antennas shall be used to measure the emitted electromagnetic field of the EUT. Biconica

47、l or log-periodic antennas and hybrid antennas are typical antennas used. The free space antenna factor shall be used. CISPR 16-3:2000, 4.7 gives parameters of broadband antennas. However no length limitation on LPDA or hybrid antennas is given. CISPR 16-1:1999, 5.5.4 and 5.5.5 give information on a

48、ntennas. CISPR 16-1:1999, 5.5.5.2 b) states “it is essential that the variation of the effective distance of the antenna from the source and its gain with frequency be taken into account”. Antennas over 1,5 m in length could increase the uncertainties of emission testing using a separation of 3 m be

49、tween the reference point of the antenna and the front of the EUT. PD CLC/TR 50485:2010CLC/TR 50485:2010 8 5 Anechoic room performance 5.1 Theoretical normalised site attenuation The Site Attenuation (SA) is the loss measured between the connectors of two antennas on a particular site. For a free space environment the SA (in dB) can be defined by Equation (1) (see Annex D): ()() dB log 20 1 1 1 2 5 log 20 T R m 10 4 2 O 10 AF AF f d d d Z SA + +

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1